Step |
Hyp |
Ref |
Expression |
1 |
|
xpstps.t |
⊢ 𝑇 = ( 𝑅 ×s 𝑆 ) |
2 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
3 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
4 |
|
simpl |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 𝑅 ∈ TopSp ) |
5 |
|
simpr |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 𝑆 ∈ TopSp ) |
6 |
|
eqid |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) = ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) |
7 |
|
eqid |
⊢ ( Scalar ‘ 𝑅 ) = ( Scalar ‘ 𝑅 ) |
8 |
|
eqid |
⊢ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) = ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) |
9 |
1 2 3 4 5 6 7 8
|
xpsval |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 𝑇 = ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) “s ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) ) |
10 |
1 2 3 4 5 6 7 8
|
xpsrnbas |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) = ( Base ‘ ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ) ) |
11 |
6
|
xpsff1o2 |
⊢ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) |
12 |
11
|
a1i |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) ) |
13 |
|
f1ocnv |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) –1-1-onto→ ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) –1-1-onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ) |
14 |
|
f1ofo |
⊢ ( ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) –1-1-onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) –onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ) |
15 |
12 13 14
|
3syl |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → ◡ ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) : ran ( 𝑥 ∈ ( Base ‘ 𝑅 ) , 𝑦 ∈ ( Base ‘ 𝑆 ) ↦ { ⟨ ∅ , 𝑥 ⟩ , ⟨ 1o , 𝑦 ⟩ } ) –onto→ ( ( Base ‘ 𝑅 ) × ( Base ‘ 𝑆 ) ) ) |
16 |
|
fvexd |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → ( Scalar ‘ 𝑅 ) ∈ V ) |
17 |
|
2on |
⊢ 2o ∈ On |
18 |
17
|
a1i |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 2o ∈ On ) |
19 |
|
xpscf |
⊢ ( { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } : 2o ⟶ TopSp ↔ ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) ) |
20 |
19
|
biimpri |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } : 2o ⟶ TopSp ) |
21 |
8 16 18 20
|
prdstps |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → ( ( Scalar ‘ 𝑅 ) Xs { ⟨ ∅ , 𝑅 ⟩ , ⟨ 1o , 𝑆 ⟩ } ) ∈ TopSp ) |
22 |
9 10 15 21
|
imastps |
⊢ ( ( 𝑅 ∈ TopSp ∧ 𝑆 ∈ TopSp ) → 𝑇 ∈ TopSp ) |