Metamath Proof Explorer


Theorem xpstps

Description: A binary product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypothesis xpstps.t T=R×𝑠S
Assertion xpstps RTopSpSTopSpTTopSp

Proof

Step Hyp Ref Expression
1 xpstps.t T=R×𝑠S
2 eqid BaseR=BaseR
3 eqid BaseS=BaseS
4 simpl RTopSpSTopSpRTopSp
5 simpr RTopSpSTopSpSTopSp
6 eqid xBaseR,yBaseSx1𝑜y=xBaseR,yBaseSx1𝑜y
7 eqid ScalarR=ScalarR
8 eqid ScalarR𝑠R1𝑜S=ScalarR𝑠R1𝑜S
9 1 2 3 4 5 6 7 8 xpsval RTopSpSTopSpT=xBaseR,yBaseSx1𝑜y-1𝑠ScalarR𝑠R1𝑜S
10 1 2 3 4 5 6 7 8 xpsrnbas RTopSpSTopSpranxBaseR,yBaseSx1𝑜y=BaseScalarR𝑠R1𝑜S
11 6 xpsff1o2 xBaseR,yBaseSx1𝑜y:BaseR×BaseS1-1 ontoranxBaseR,yBaseSx1𝑜y
12 11 a1i RTopSpSTopSpxBaseR,yBaseSx1𝑜y:BaseR×BaseS1-1 ontoranxBaseR,yBaseSx1𝑜y
13 f1ocnv xBaseR,yBaseSx1𝑜y:BaseR×BaseS1-1 ontoranxBaseR,yBaseSx1𝑜yxBaseR,yBaseSx1𝑜y-1:ranxBaseR,yBaseSx1𝑜y1-1 ontoBaseR×BaseS
14 f1ofo xBaseR,yBaseSx1𝑜y-1:ranxBaseR,yBaseSx1𝑜y1-1 ontoBaseR×BaseSxBaseR,yBaseSx1𝑜y-1:ranxBaseR,yBaseSx1𝑜yontoBaseR×BaseS
15 12 13 14 3syl RTopSpSTopSpxBaseR,yBaseSx1𝑜y-1:ranxBaseR,yBaseSx1𝑜yontoBaseR×BaseS
16 fvexd RTopSpSTopSpScalarRV
17 2on 2𝑜On
18 17 a1i RTopSpSTopSp2𝑜On
19 xpscf R1𝑜S:2𝑜TopSpRTopSpSTopSp
20 19 biimpri RTopSpSTopSpR1𝑜S:2𝑜TopSp
21 8 16 18 20 prdstps RTopSpSTopSpScalarR𝑠R1𝑜STopSp
22 9 10 15 21 imastps RTopSpSTopSpTTopSp