Description: A binary product of topologies is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)
Ref | Expression | ||
---|---|---|---|
Hypothesis | xpstps.t | |
|
Assertion | xpstps | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpstps.t | |
|
2 | eqid | |
|
3 | eqid | |
|
4 | simpl | |
|
5 | simpr | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 1 2 3 4 5 6 7 8 | xpsval | |
10 | 1 2 3 4 5 6 7 8 | xpsrnbas | |
11 | 6 | xpsff1o2 | |
12 | 11 | a1i | |
13 | f1ocnv | |
|
14 | f1ofo | |
|
15 | 12 13 14 | 3syl | |
16 | fvexd | |
|
17 | 2on | |
|
18 | 17 | a1i | |
19 | xpscf | |
|
20 | 19 | biimpri | |
21 | 8 16 18 20 | prdstps | |
22 | 9 10 15 21 | imastps | |