Metamath Proof Explorer


Theorem imastps

Description: The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses imastps.u φU=F𝑠R
imastps.v φV=BaseR
imastps.f φF:VontoB
imastps.r φRTopSp
Assertion imastps φUTopSp

Proof

Step Hyp Ref Expression
1 imastps.u φU=F𝑠R
2 imastps.v φV=BaseR
3 imastps.f φF:VontoB
4 imastps.r φRTopSp
5 eqid TopOpenR=TopOpenR
6 eqid TopOpenU=TopOpenU
7 1 2 3 4 5 6 imastopn φTopOpenU=TopOpenRqTopF
8 eqid BaseR=BaseR
9 8 5 istps RTopSpTopOpenRTopOnBaseR
10 4 9 sylib φTopOpenRTopOnBaseR
11 2 fveq2d φTopOnV=TopOnBaseR
12 10 11 eleqtrrd φTopOpenRTopOnV
13 qtoptopon TopOpenRTopOnVF:VontoBTopOpenRqTopFTopOnB
14 12 3 13 syl2anc φTopOpenRqTopFTopOnB
15 1 2 3 4 imasbas φB=BaseU
16 15 fveq2d φTopOnB=TopOnBaseU
17 14 16 eleqtrd φTopOpenRqTopFTopOnBaseU
18 7 17 eqeltrd φTopOpenUTopOnBaseU
19 eqid BaseU=BaseU
20 19 6 istps UTopSpTopOpenUTopOnBaseU
21 18 20 sylibr φUTopSp