Metamath Proof Explorer


Theorem imastps

Description: The image of a topological space under a function is a topological space. (Contributed by Mario Carneiro, 27-Aug-2015)

Ref Expression
Hypotheses imastps.u φ U = F 𝑠 R
imastps.v φ V = Base R
imastps.f φ F : V onto B
imastps.r φ R TopSp
Assertion imastps φ U TopSp

Proof

Step Hyp Ref Expression
1 imastps.u φ U = F 𝑠 R
2 imastps.v φ V = Base R
3 imastps.f φ F : V onto B
4 imastps.r φ R TopSp
5 eqid TopOpen R = TopOpen R
6 eqid TopOpen U = TopOpen U
7 1 2 3 4 5 6 imastopn φ TopOpen U = TopOpen R qTop F
8 eqid Base R = Base R
9 8 5 istps R TopSp TopOpen R TopOn Base R
10 4 9 sylib φ TopOpen R TopOn Base R
11 2 fveq2d φ TopOn V = TopOn Base R
12 10 11 eleqtrrd φ TopOpen R TopOn V
13 qtoptopon TopOpen R TopOn V F : V onto B TopOpen R qTop F TopOn B
14 12 3 13 syl2anc φ TopOpen R qTop F TopOn B
15 1 2 3 4 imasbas φ B = Base U
16 15 fveq2d φ TopOn B = TopOn Base U
17 14 16 eleqtrd φ TopOpen R qTop F TopOn Base U
18 7 17 eqeltrd φ TopOpen U TopOn Base U
19 eqid Base U = Base U
20 19 6 istps U TopSp TopOpen U TopOn Base U
21 18 20 sylibr φ U TopSp