| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elun | ⊢ ( 𝑦  ∈  ( 𝐴  ∪  { +∞ } )  ↔  ( 𝑦  ∈  𝐴  ∨  𝑦  ∈  { +∞ } ) ) | 
						
							| 2 |  | simpr | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  ( 𝑦  ∈  𝐴  →  ¬  𝑦  <  𝑥 ) )  →  ( 𝑦  ∈  𝐴  →  ¬  𝑦  <  𝑥 ) ) | 
						
							| 3 |  | velsn | ⊢ ( 𝑦  ∈  { +∞ }  ↔  𝑦  =  +∞ ) | 
						
							| 4 |  | pnfnlt | ⊢ ( 𝑥  ∈  ℝ*  →  ¬  +∞  <  𝑥 ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑦  =  +∞  →  ( 𝑦  <  𝑥  ↔  +∞  <  𝑥 ) ) | 
						
							| 6 | 5 | notbid | ⊢ ( 𝑦  =  +∞  →  ( ¬  𝑦  <  𝑥  ↔  ¬  +∞  <  𝑥 ) ) | 
						
							| 7 | 4 6 | syl5ibrcom | ⊢ ( 𝑥  ∈  ℝ*  →  ( 𝑦  =  +∞  →  ¬  𝑦  <  𝑥 ) ) | 
						
							| 8 | 3 7 | biimtrid | ⊢ ( 𝑥  ∈  ℝ*  →  ( 𝑦  ∈  { +∞ }  →  ¬  𝑦  <  𝑥 ) ) | 
						
							| 9 | 8 | adantr | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  ( 𝑦  ∈  𝐴  →  ¬  𝑦  <  𝑥 ) )  →  ( 𝑦  ∈  { +∞ }  →  ¬  𝑦  <  𝑥 ) ) | 
						
							| 10 | 2 9 | jaod | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  ( 𝑦  ∈  𝐴  →  ¬  𝑦  <  𝑥 ) )  →  ( ( 𝑦  ∈  𝐴  ∨  𝑦  ∈  { +∞ } )  →  ¬  𝑦  <  𝑥 ) ) | 
						
							| 11 | 1 10 | biimtrid | ⊢ ( ( 𝑥  ∈  ℝ*  ∧  ( 𝑦  ∈  𝐴  →  ¬  𝑦  <  𝑥 ) )  →  ( 𝑦  ∈  ( 𝐴  ∪  { +∞ } )  →  ¬  𝑦  <  𝑥 ) ) | 
						
							| 12 | 11 | ex | ⊢ ( 𝑥  ∈  ℝ*  →  ( ( 𝑦  ∈  𝐴  →  ¬  𝑦  <  𝑥 )  →  ( 𝑦  ∈  ( 𝐴  ∪  { +∞ } )  →  ¬  𝑦  <  𝑥 ) ) ) | 
						
							| 13 | 12 | ralimdv2 | ⊢ ( 𝑥  ∈  ℝ*  →  ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  →  ∀ 𝑦  ∈  ( 𝐴  ∪  { +∞ } ) ¬  𝑦  <  𝑥 ) ) | 
						
							| 14 |  | elun1 | ⊢ ( 𝑧  ∈  𝐴  →  𝑧  ∈  ( 𝐴  ∪  { +∞ } ) ) | 
						
							| 15 | 14 | anim1i | ⊢ ( ( 𝑧  ∈  𝐴  ∧  𝑧  <  𝑦 )  →  ( 𝑧  ∈  ( 𝐴  ∪  { +∞ } )  ∧  𝑧  <  𝑦 ) ) | 
						
							| 16 | 15 | reximi2 | ⊢ ( ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦  →  ∃ 𝑧  ∈  ( 𝐴  ∪  { +∞ } ) 𝑧  <  𝑦 ) | 
						
							| 17 | 16 | imim2i | ⊢ ( ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  →  ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( 𝐴  ∪  { +∞ } ) 𝑧  <  𝑦 ) ) | 
						
							| 18 | 17 | ralimi | ⊢ ( ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 )  →  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( 𝐴  ∪  { +∞ } ) 𝑧  <  𝑦 ) ) | 
						
							| 19 | 13 18 | anim12d1 | ⊢ ( 𝑥  ∈  ℝ*  →  ( ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  →  ( ∀ 𝑦  ∈  ( 𝐴  ∪  { +∞ } ) ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( 𝐴  ∪  { +∞ } ) 𝑧  <  𝑦 ) ) ) ) | 
						
							| 20 | 19 | reximia | ⊢ ( ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  𝐴 ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  𝐴 𝑧  <  𝑦 ) )  →  ∃ 𝑥  ∈  ℝ* ( ∀ 𝑦  ∈  ( 𝐴  ∪  { +∞ } ) ¬  𝑦  <  𝑥  ∧  ∀ 𝑦  ∈  ℝ* ( 𝑥  <  𝑦  →  ∃ 𝑧  ∈  ( 𝐴  ∪  { +∞ } ) 𝑧  <  𝑦 ) ) ) |