Metamath Proof Explorer


Theorem zrhneg

Description: The canonical homomorphism from the integers to a ring R maps additive inverses to additive inverses. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses zrhneg.1 𝐿 = ( ℤRHom ‘ 𝑅 )
zrhneg.2 𝐼 = ( invg𝑅 )
zrhneg.3 ( 𝜑𝑅 ∈ Ring )
zrhneg.4 ( 𝜑𝑁 ∈ ℤ )
Assertion zrhneg ( 𝜑 → ( 𝐿 ‘ - 𝑁 ) = ( 𝐼 ‘ ( 𝐿𝑁 ) ) )

Proof

Step Hyp Ref Expression
1 zrhneg.1 𝐿 = ( ℤRHom ‘ 𝑅 )
2 zrhneg.2 𝐼 = ( invg𝑅 )
3 zrhneg.3 ( 𝜑𝑅 ∈ Ring )
4 zrhneg.4 ( 𝜑𝑁 ∈ ℤ )
5 zringinvg ( 𝑁 ∈ ℤ → - 𝑁 = ( ( invg ‘ ℤring ) ‘ 𝑁 ) )
6 4 5 syl ( 𝜑 → - 𝑁 = ( ( invg ‘ ℤring ) ‘ 𝑁 ) )
7 6 fveq2d ( 𝜑 → ( 𝐿 ‘ - 𝑁 ) = ( 𝐿 ‘ ( ( invg ‘ ℤring ) ‘ 𝑁 ) ) )
8 1 zrhrhm ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) )
9 rhmghm ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) )
10 3 8 9 3syl ( 𝜑𝐿 ∈ ( ℤring GrpHom 𝑅 ) )
11 zringbas ℤ = ( Base ‘ ℤring )
12 eqid ( invg ‘ ℤring ) = ( invg ‘ ℤring )
13 11 12 2 ghminv ( ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐿 ‘ ( ( invg ‘ ℤring ) ‘ 𝑁 ) ) = ( 𝐼 ‘ ( 𝐿𝑁 ) ) )
14 10 4 13 syl2anc ( 𝜑 → ( 𝐿 ‘ ( ( invg ‘ ℤring ) ‘ 𝑁 ) ) = ( 𝐼 ‘ ( 𝐿𝑁 ) ) )
15 7 14 eqtrd ( 𝜑 → ( 𝐿 ‘ - 𝑁 ) = ( 𝐼 ‘ ( 𝐿𝑁 ) ) )