Step |
Hyp |
Ref |
Expression |
1 |
|
zrhneg.1 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
2 |
|
zrhneg.2 |
⊢ 𝐼 = ( invg ‘ 𝑅 ) |
3 |
|
zrhneg.3 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
4 |
|
zrhneg.4 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
5 |
|
zringinvg |
⊢ ( 𝑁 ∈ ℤ → - 𝑁 = ( ( invg ‘ ℤring ) ‘ 𝑁 ) ) |
6 |
4 5
|
syl |
⊢ ( 𝜑 → - 𝑁 = ( ( invg ‘ ℤring ) ‘ 𝑁 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 𝐿 ‘ - 𝑁 ) = ( 𝐿 ‘ ( ( invg ‘ ℤring ) ‘ 𝑁 ) ) ) |
8 |
1
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
9 |
|
rhmghm |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) |
10 |
3 8 9
|
3syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) |
11 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
12 |
|
eqid |
⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) |
13 |
11 12 2
|
ghminv |
⊢ ( ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ∧ 𝑁 ∈ ℤ ) → ( 𝐿 ‘ ( ( invg ‘ ℤring ) ‘ 𝑁 ) ) = ( 𝐼 ‘ ( 𝐿 ‘ 𝑁 ) ) ) |
14 |
10 4 13
|
syl2anc |
⊢ ( 𝜑 → ( 𝐿 ‘ ( ( invg ‘ ℤring ) ‘ 𝑁 ) ) = ( 𝐼 ‘ ( 𝐿 ‘ 𝑁 ) ) ) |
15 |
7 14
|
eqtrd |
⊢ ( 𝜑 → ( 𝐿 ‘ - 𝑁 ) = ( 𝐼 ‘ ( 𝐿 ‘ 𝑁 ) ) ) |