Metamath Proof Explorer


Theorem zrhneg

Description: The canonical homomorphism from the integers to a ring R maps additive inverses to additive inverses. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses zrhneg.1
|- L = ( ZRHom ` R )
zrhneg.2
|- I = ( invg ` R )
zrhneg.3
|- ( ph -> R e. Ring )
zrhneg.4
|- ( ph -> N e. ZZ )
Assertion zrhneg
|- ( ph -> ( L ` -u N ) = ( I ` ( L ` N ) ) )

Proof

Step Hyp Ref Expression
1 zrhneg.1
 |-  L = ( ZRHom ` R )
2 zrhneg.2
 |-  I = ( invg ` R )
3 zrhneg.3
 |-  ( ph -> R e. Ring )
4 zrhneg.4
 |-  ( ph -> N e. ZZ )
5 zringinvg
 |-  ( N e. ZZ -> -u N = ( ( invg ` ZZring ) ` N ) )
6 4 5 syl
 |-  ( ph -> -u N = ( ( invg ` ZZring ) ` N ) )
7 6 fveq2d
 |-  ( ph -> ( L ` -u N ) = ( L ` ( ( invg ` ZZring ) ` N ) ) )
8 1 zrhrhm
 |-  ( R e. Ring -> L e. ( ZZring RingHom R ) )
9 rhmghm
 |-  ( L e. ( ZZring RingHom R ) -> L e. ( ZZring GrpHom R ) )
10 3 8 9 3syl
 |-  ( ph -> L e. ( ZZring GrpHom R ) )
11 zringbas
 |-  ZZ = ( Base ` ZZring )
12 eqid
 |-  ( invg ` ZZring ) = ( invg ` ZZring )
13 11 12 2 ghminv
 |-  ( ( L e. ( ZZring GrpHom R ) /\ N e. ZZ ) -> ( L ` ( ( invg ` ZZring ) ` N ) ) = ( I ` ( L ` N ) ) )
14 10 4 13 syl2anc
 |-  ( ph -> ( L ` ( ( invg ` ZZring ) ` N ) ) = ( I ` ( L ` N ) ) )
15 7 14 eqtrd
 |-  ( ph -> ( L ` -u N ) = ( I ` ( L ` N ) ) )