Step |
Hyp |
Ref |
Expression |
1 |
|
zrhcntr.1 |
|- M = ( mulGrp ` R ) |
2 |
|
zrhcntr.2 |
|- C = ( Cntr ` M ) |
3 |
|
zrhcntr.3 |
|- L = ( ZRHom ` R ) |
4 |
|
zrhcntr.4 |
|- ( ph -> R e. Ring ) |
5 |
|
zrhcntr.5 |
|- ( ph -> N e. ZZ ) |
6 |
|
fveq2 |
|- ( m = N -> ( L ` m ) = ( L ` N ) ) |
7 |
6
|
eleq1d |
|- ( m = N -> ( ( L ` m ) e. C <-> ( L ` N ) e. C ) ) |
8 |
|
fveq2 |
|- ( i = 0 -> ( L ` i ) = ( L ` 0 ) ) |
9 |
8
|
eleq1d |
|- ( i = 0 -> ( ( L ` i ) e. C <-> ( L ` 0 ) e. C ) ) |
10 |
|
fveq2 |
|- ( i = n -> ( L ` i ) = ( L ` n ) ) |
11 |
10
|
eleq1d |
|- ( i = n -> ( ( L ` i ) e. C <-> ( L ` n ) e. C ) ) |
12 |
|
fveq2 |
|- ( i = ( n + 1 ) -> ( L ` i ) = ( L ` ( n + 1 ) ) ) |
13 |
12
|
eleq1d |
|- ( i = ( n + 1 ) -> ( ( L ` i ) e. C <-> ( L ` ( n + 1 ) ) e. C ) ) |
14 |
|
fveq2 |
|- ( i = m -> ( L ` i ) = ( L ` m ) ) |
15 |
14
|
eleq1d |
|- ( i = m -> ( ( L ` i ) e. C <-> ( L ` m ) e. C ) ) |
16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
17 |
3 16
|
zrh0 |
|- ( R e. Ring -> ( L ` 0 ) = ( 0g ` R ) ) |
18 |
4 17
|
syl |
|- ( ph -> ( L ` 0 ) = ( 0g ` R ) ) |
19 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
20 |
19 16
|
ring0cl |
|- ( R e. Ring -> ( 0g ` R ) e. ( Base ` R ) ) |
21 |
4 20
|
syl |
|- ( ph -> ( 0g ` R ) e. ( Base ` R ) ) |
22 |
18 21
|
eqeltrd |
|- ( ph -> ( L ` 0 ) e. ( Base ` R ) ) |
23 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
24 |
4
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> R e. Ring ) |
25 |
|
simpr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
26 |
19 23 16 24 25
|
ringlzd |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) ) |
27 |
19 23 16 24 25
|
ringrzd |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
28 |
26 27
|
eqtr4d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( 0g ` R ) ( .r ` R ) x ) = ( x ( .r ` R ) ( 0g ` R ) ) ) |
29 |
18
|
oveq1d |
|- ( ph -> ( ( L ` 0 ) ( .r ` R ) x ) = ( ( 0g ` R ) ( .r ` R ) x ) ) |
30 |
29
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( L ` 0 ) ( .r ` R ) x ) = ( ( 0g ` R ) ( .r ` R ) x ) ) |
31 |
18
|
oveq2d |
|- ( ph -> ( x ( .r ` R ) ( L ` 0 ) ) = ( x ( .r ` R ) ( 0g ` R ) ) ) |
32 |
31
|
adantr |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( L ` 0 ) ) = ( x ( .r ` R ) ( 0g ` R ) ) ) |
33 |
28 30 32
|
3eqtr4d |
|- ( ( ph /\ x e. ( Base ` R ) ) -> ( ( L ` 0 ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` 0 ) ) ) |
34 |
33
|
ralrimiva |
|- ( ph -> A. x e. ( Base ` R ) ( ( L ` 0 ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` 0 ) ) ) |
35 |
1 19
|
mgpbas |
|- ( Base ` R ) = ( Base ` M ) |
36 |
1 23
|
mgpplusg |
|- ( .r ` R ) = ( +g ` M ) |
37 |
35 36 2
|
elcntr |
|- ( ( L ` 0 ) e. C <-> ( ( L ` 0 ) e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( L ` 0 ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` 0 ) ) ) ) |
38 |
22 34 37
|
sylanbrc |
|- ( ph -> ( L ` 0 ) e. C ) |
39 |
3
|
zrhrhm |
|- ( R e. Ring -> L e. ( ZZring RingHom R ) ) |
40 |
|
rhmghm |
|- ( L e. ( ZZring RingHom R ) -> L e. ( ZZring GrpHom R ) ) |
41 |
4 39 40
|
3syl |
|- ( ph -> L e. ( ZZring GrpHom R ) ) |
42 |
41
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> L e. ( ZZring GrpHom R ) ) |
43 |
|
simplr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> n e. NN0 ) |
44 |
43
|
nn0zd |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> n e. ZZ ) |
45 |
|
1zzd |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> 1 e. ZZ ) |
46 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
47 |
|
zringplusg |
|- + = ( +g ` ZZring ) |
48 |
|
eqid |
|- ( +g ` R ) = ( +g ` R ) |
49 |
46 47 48
|
ghmlin |
|- ( ( L e. ( ZZring GrpHom R ) /\ n e. ZZ /\ 1 e. ZZ ) -> ( L ` ( n + 1 ) ) = ( ( L ` n ) ( +g ` R ) ( L ` 1 ) ) ) |
50 |
42 44 45 49
|
syl3anc |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> ( L ` ( n + 1 ) ) = ( ( L ` n ) ( +g ` R ) ( L ` 1 ) ) ) |
51 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
52 |
3 51
|
zrh1 |
|- ( R e. Ring -> ( L ` 1 ) = ( 1r ` R ) ) |
53 |
4 52
|
syl |
|- ( ph -> ( L ` 1 ) = ( 1r ` R ) ) |
54 |
53
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> ( L ` 1 ) = ( 1r ` R ) ) |
55 |
54
|
oveq2d |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> ( ( L ` n ) ( +g ` R ) ( L ` 1 ) ) = ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) ) |
56 |
50 55
|
eqtrd |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> ( L ` ( n + 1 ) ) = ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) ) |
57 |
4
|
ringgrpd |
|- ( ph -> R e. Grp ) |
58 |
57
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> R e. Grp ) |
59 |
35
|
cntrss |
|- ( Cntr ` M ) C_ ( Base ` R ) |
60 |
2 59
|
eqsstri |
|- C C_ ( Base ` R ) |
61 |
60
|
a1i |
|- ( ( ph /\ n e. NN0 ) -> C C_ ( Base ` R ) ) |
62 |
61
|
sselda |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> ( L ` n ) e. ( Base ` R ) ) |
63 |
19 51
|
ringidcl |
|- ( R e. Ring -> ( 1r ` R ) e. ( Base ` R ) ) |
64 |
4 63
|
syl |
|- ( ph -> ( 1r ` R ) e. ( Base ` R ) ) |
65 |
64
|
ad2antrr |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> ( 1r ` R ) e. ( Base ` R ) ) |
66 |
19 48 58 62 65
|
grpcld |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) e. ( Base ` R ) ) |
67 |
35 36 2
|
cntri |
|- ( ( ( L ` n ) e. C /\ x e. ( Base ` R ) ) -> ( ( L ` n ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` n ) ) ) |
68 |
67
|
adantll |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> ( ( L ` n ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` n ) ) ) |
69 |
4
|
ad3antrrr |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> R e. Ring ) |
70 |
|
simpr |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
71 |
19 23 51 69 70
|
ringlidmd |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) x ) = x ) |
72 |
19 23 51 69 70
|
ringridmd |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( 1r ` R ) ) = x ) |
73 |
71 72
|
eqtr4d |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> ( ( 1r ` R ) ( .r ` R ) x ) = ( x ( .r ` R ) ( 1r ` R ) ) ) |
74 |
68 73
|
oveq12d |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> ( ( ( L ` n ) ( .r ` R ) x ) ( +g ` R ) ( ( 1r ` R ) ( .r ` R ) x ) ) = ( ( x ( .r ` R ) ( L ` n ) ) ( +g ` R ) ( x ( .r ` R ) ( 1r ` R ) ) ) ) |
75 |
62
|
adantr |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> ( L ` n ) e. ( Base ` R ) ) |
76 |
69 63
|
syl |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> ( 1r ` R ) e. ( Base ` R ) ) |
77 |
19 48 23 69 75 76 70
|
ringdird |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> ( ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) ( .r ` R ) x ) = ( ( ( L ` n ) ( .r ` R ) x ) ( +g ` R ) ( ( 1r ` R ) ( .r ` R ) x ) ) ) |
78 |
19 48 23 69 70 75 76
|
ringdid |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) ) = ( ( x ( .r ` R ) ( L ` n ) ) ( +g ` R ) ( x ( .r ` R ) ( 1r ` R ) ) ) ) |
79 |
74 77 78
|
3eqtr4d |
|- ( ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) /\ x e. ( Base ` R ) ) -> ( ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) ( .r ` R ) x ) = ( x ( .r ` R ) ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) ) ) |
80 |
79
|
ralrimiva |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> A. x e. ( Base ` R ) ( ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) ( .r ` R ) x ) = ( x ( .r ` R ) ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) ) ) |
81 |
35 36 2
|
elcntr |
|- ( ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) e. C <-> ( ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) ( .r ` R ) x ) = ( x ( .r ` R ) ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) ) ) ) |
82 |
66 80 81
|
sylanbrc |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> ( ( L ` n ) ( +g ` R ) ( 1r ` R ) ) e. C ) |
83 |
56 82
|
eqeltrd |
|- ( ( ( ph /\ n e. NN0 ) /\ ( L ` n ) e. C ) -> ( L ` ( n + 1 ) ) e. C ) |
84 |
9 11 13 15 38 83
|
nn0indd |
|- ( ( ph /\ m e. NN0 ) -> ( L ` m ) e. C ) |
85 |
84
|
ralrimiva |
|- ( ph -> A. m e. NN0 ( L ` m ) e. C ) |
86 |
85
|
adantr |
|- ( ( ph /\ N e. NN0 ) -> A. m e. NN0 ( L ` m ) e. C ) |
87 |
|
simpr |
|- ( ( ph /\ N e. NN0 ) -> N e. NN0 ) |
88 |
7 86 87
|
rspcdva |
|- ( ( ph /\ N e. NN0 ) -> ( L ` N ) e. C ) |
89 |
46 19
|
rhmf |
|- ( L e. ( ZZring RingHom R ) -> L : ZZ --> ( Base ` R ) ) |
90 |
4 39 89
|
3syl |
|- ( ph -> L : ZZ --> ( Base ` R ) ) |
91 |
90
|
adantr |
|- ( ( ph /\ -u N e. NN0 ) -> L : ZZ --> ( Base ` R ) ) |
92 |
5
|
adantr |
|- ( ( ph /\ -u N e. NN0 ) -> N e. ZZ ) |
93 |
91 92
|
ffvelcdmd |
|- ( ( ph /\ -u N e. NN0 ) -> ( L ` N ) e. ( Base ` R ) ) |
94 |
|
eqid |
|- ( invg ` R ) = ( invg ` R ) |
95 |
4
|
ad2antrr |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> R e. Ring ) |
96 |
|
fveq2 |
|- ( m = -u N -> ( L ` m ) = ( L ` -u N ) ) |
97 |
96
|
eleq1d |
|- ( m = -u N -> ( ( L ` m ) e. C <-> ( L ` -u N ) e. C ) ) |
98 |
85
|
adantr |
|- ( ( ph /\ -u N e. NN0 ) -> A. m e. NN0 ( L ` m ) e. C ) |
99 |
|
simpr |
|- ( ( ph /\ -u N e. NN0 ) -> -u N e. NN0 ) |
100 |
97 98 99
|
rspcdva |
|- ( ( ph /\ -u N e. NN0 ) -> ( L ` -u N ) e. C ) |
101 |
35 36 2
|
elcntr |
|- ( ( L ` -u N ) e. C <-> ( ( L ` -u N ) e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( L ` -u N ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` -u N ) ) ) ) |
102 |
100 101
|
sylib |
|- ( ( ph /\ -u N e. NN0 ) -> ( ( L ` -u N ) e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( L ` -u N ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` -u N ) ) ) ) |
103 |
102
|
simpld |
|- ( ( ph /\ -u N e. NN0 ) -> ( L ` -u N ) e. ( Base ` R ) ) |
104 |
103
|
adantr |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( L ` -u N ) e. ( Base ` R ) ) |
105 |
|
simpr |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> x e. ( Base ` R ) ) |
106 |
19 23 94 95 104 105
|
ringmneg1 |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( ( ( invg ` R ) ` ( L ` -u N ) ) ( .r ` R ) x ) = ( ( invg ` R ) ` ( ( L ` -u N ) ( .r ` R ) x ) ) ) |
107 |
5
|
zcnd |
|- ( ph -> N e. CC ) |
108 |
107
|
ad2antrr |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> N e. CC ) |
109 |
108
|
negnegd |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> -u -u N = N ) |
110 |
5
|
znegcld |
|- ( ph -> -u N e. ZZ ) |
111 |
|
zringinvg |
|- ( -u N e. ZZ -> -u -u N = ( ( invg ` ZZring ) ` -u N ) ) |
112 |
110 111
|
syl |
|- ( ph -> -u -u N = ( ( invg ` ZZring ) ` -u N ) ) |
113 |
112
|
ad2antrr |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> -u -u N = ( ( invg ` ZZring ) ` -u N ) ) |
114 |
109 113
|
eqtr3d |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> N = ( ( invg ` ZZring ) ` -u N ) ) |
115 |
114
|
fveq2d |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( L ` N ) = ( L ` ( ( invg ` ZZring ) ` -u N ) ) ) |
116 |
95 39 40
|
3syl |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> L e. ( ZZring GrpHom R ) ) |
117 |
110
|
ad2antrr |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> -u N e. ZZ ) |
118 |
|
eqid |
|- ( invg ` ZZring ) = ( invg ` ZZring ) |
119 |
46 118 94
|
ghminv |
|- ( ( L e. ( ZZring GrpHom R ) /\ -u N e. ZZ ) -> ( L ` ( ( invg ` ZZring ) ` -u N ) ) = ( ( invg ` R ) ` ( L ` -u N ) ) ) |
120 |
116 117 119
|
syl2anc |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( L ` ( ( invg ` ZZring ) ` -u N ) ) = ( ( invg ` R ) ` ( L ` -u N ) ) ) |
121 |
115 120
|
eqtrd |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( L ` N ) = ( ( invg ` R ) ` ( L ` -u N ) ) ) |
122 |
121
|
oveq1d |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( ( L ` N ) ( .r ` R ) x ) = ( ( ( invg ` R ) ` ( L ` -u N ) ) ( .r ` R ) x ) ) |
123 |
19 23 94 95 105 104
|
ringmneg2 |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( ( invg ` R ) ` ( L ` -u N ) ) ) = ( ( invg ` R ) ` ( x ( .r ` R ) ( L ` -u N ) ) ) ) |
124 |
121
|
oveq2d |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( L ` N ) ) = ( x ( .r ` R ) ( ( invg ` R ) ` ( L ` -u N ) ) ) ) |
125 |
102
|
simprd |
|- ( ( ph /\ -u N e. NN0 ) -> A. x e. ( Base ` R ) ( ( L ` -u N ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` -u N ) ) ) |
126 |
125
|
r19.21bi |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( ( L ` -u N ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` -u N ) ) ) |
127 |
126
|
fveq2d |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( ( invg ` R ) ` ( ( L ` -u N ) ( .r ` R ) x ) ) = ( ( invg ` R ) ` ( x ( .r ` R ) ( L ` -u N ) ) ) ) |
128 |
123 124 127
|
3eqtr4d |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( x ( .r ` R ) ( L ` N ) ) = ( ( invg ` R ) ` ( ( L ` -u N ) ( .r ` R ) x ) ) ) |
129 |
106 122 128
|
3eqtr4d |
|- ( ( ( ph /\ -u N e. NN0 ) /\ x e. ( Base ` R ) ) -> ( ( L ` N ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` N ) ) ) |
130 |
129
|
ralrimiva |
|- ( ( ph /\ -u N e. NN0 ) -> A. x e. ( Base ` R ) ( ( L ` N ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` N ) ) ) |
131 |
35 36 2
|
elcntr |
|- ( ( L ` N ) e. C <-> ( ( L ` N ) e. ( Base ` R ) /\ A. x e. ( Base ` R ) ( ( L ` N ) ( .r ` R ) x ) = ( x ( .r ` R ) ( L ` N ) ) ) ) |
132 |
93 130 131
|
sylanbrc |
|- ( ( ph /\ -u N e. NN0 ) -> ( L ` N ) e. C ) |
133 |
|
elznn0 |
|- ( N e. ZZ <-> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
134 |
5 133
|
sylib |
|- ( ph -> ( N e. RR /\ ( N e. NN0 \/ -u N e. NN0 ) ) ) |
135 |
134
|
simprd |
|- ( ph -> ( N e. NN0 \/ -u N e. NN0 ) ) |
136 |
88 132 135
|
mpjaodan |
|- ( ph -> ( L ` N ) e. C ) |