Step |
Hyp |
Ref |
Expression |
1 |
|
zrhcntr.1 |
⊢ 𝑀 = ( mulGrp ‘ 𝑅 ) |
2 |
|
zrhcntr.2 |
⊢ 𝐶 = ( Cntr ‘ 𝑀 ) |
3 |
|
zrhcntr.3 |
⊢ 𝐿 = ( ℤRHom ‘ 𝑅 ) |
4 |
|
zrhcntr.4 |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
5 |
|
zrhcntr.5 |
⊢ ( 𝜑 → 𝑁 ∈ ℤ ) |
6 |
|
fveq2 |
⊢ ( 𝑚 = 𝑁 → ( 𝐿 ‘ 𝑚 ) = ( 𝐿 ‘ 𝑁 ) ) |
7 |
6
|
eleq1d |
⊢ ( 𝑚 = 𝑁 → ( ( 𝐿 ‘ 𝑚 ) ∈ 𝐶 ↔ ( 𝐿 ‘ 𝑁 ) ∈ 𝐶 ) ) |
8 |
|
fveq2 |
⊢ ( 𝑖 = 0 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 0 ) ) |
9 |
8
|
eleq1d |
⊢ ( 𝑖 = 0 → ( ( 𝐿 ‘ 𝑖 ) ∈ 𝐶 ↔ ( 𝐿 ‘ 0 ) ∈ 𝐶 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑖 = 𝑛 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑛 ) ) |
11 |
10
|
eleq1d |
⊢ ( 𝑖 = 𝑛 → ( ( 𝐿 ‘ 𝑖 ) ∈ 𝐶 ↔ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ) |
12 |
|
fveq2 |
⊢ ( 𝑖 = ( 𝑛 + 1 ) → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ ( 𝑛 + 1 ) ) ) |
13 |
12
|
eleq1d |
⊢ ( 𝑖 = ( 𝑛 + 1 ) → ( ( 𝐿 ‘ 𝑖 ) ∈ 𝐶 ↔ ( 𝐿 ‘ ( 𝑛 + 1 ) ) ∈ 𝐶 ) ) |
14 |
|
fveq2 |
⊢ ( 𝑖 = 𝑚 → ( 𝐿 ‘ 𝑖 ) = ( 𝐿 ‘ 𝑚 ) ) |
15 |
14
|
eleq1d |
⊢ ( 𝑖 = 𝑚 → ( ( 𝐿 ‘ 𝑖 ) ∈ 𝐶 ↔ ( 𝐿 ‘ 𝑚 ) ∈ 𝐶 ) ) |
16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
17 |
3 16
|
zrh0 |
⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
18 |
4 17
|
syl |
⊢ ( 𝜑 → ( 𝐿 ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
19 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
20 |
19 16
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
21 |
4 20
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
22 |
18 21
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐿 ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ) |
23 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
24 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
26 |
19 23 16 24 25
|
ringlzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 0g ‘ 𝑅 ) ) |
27 |
19 23 16 24 25
|
ringrzd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
28 |
26 27
|
eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
29 |
18
|
oveq1d |
⊢ ( 𝜑 → ( ( 𝐿 ‘ 0 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
30 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐿 ‘ 0 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( 0g ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
31 |
18
|
oveq2d |
⊢ ( 𝜑 → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 0 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
32 |
31
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 0 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 0g ‘ 𝑅 ) ) ) |
33 |
28 30 32
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐿 ‘ 0 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 0 ) ) ) |
34 |
33
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐿 ‘ 0 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 0 ) ) ) |
35 |
1 19
|
mgpbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑀 ) |
36 |
1 23
|
mgpplusg |
⊢ ( .r ‘ 𝑅 ) = ( +g ‘ 𝑀 ) |
37 |
35 36 2
|
elcntr |
⊢ ( ( 𝐿 ‘ 0 ) ∈ 𝐶 ↔ ( ( 𝐿 ‘ 0 ) ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐿 ‘ 0 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 0 ) ) ) ) |
38 |
22 34 37
|
sylanbrc |
⊢ ( 𝜑 → ( 𝐿 ‘ 0 ) ∈ 𝐶 ) |
39 |
3
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → 𝐿 ∈ ( ℤring RingHom 𝑅 ) ) |
40 |
|
rhmghm |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) |
41 |
4 39 40
|
3syl |
⊢ ( 𝜑 → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) |
42 |
41
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) |
43 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → 𝑛 ∈ ℕ0 ) |
44 |
43
|
nn0zd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → 𝑛 ∈ ℤ ) |
45 |
|
1zzd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → 1 ∈ ℤ ) |
46 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
47 |
|
zringplusg |
⊢ + = ( +g ‘ ℤring ) |
48 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
49 |
46 47 48
|
ghmlin |
⊢ ( ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ∧ 𝑛 ∈ ℤ ∧ 1 ∈ ℤ ) → ( 𝐿 ‘ ( 𝑛 + 1 ) ) = ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ 1 ) ) ) |
50 |
42 44 45 49
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → ( 𝐿 ‘ ( 𝑛 + 1 ) ) = ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ 1 ) ) ) |
51 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
52 |
3 51
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( 𝐿 ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
53 |
4 52
|
syl |
⊢ ( 𝜑 → ( 𝐿 ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
54 |
53
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → ( 𝐿 ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
55 |
54
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 𝐿 ‘ 1 ) ) = ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
56 |
50 55
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → ( 𝐿 ‘ ( 𝑛 + 1 ) ) = ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
57 |
4
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
58 |
57
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → 𝑅 ∈ Grp ) |
59 |
35
|
cntrss |
⊢ ( Cntr ‘ 𝑀 ) ⊆ ( Base ‘ 𝑅 ) |
60 |
2 59
|
eqsstri |
⊢ 𝐶 ⊆ ( Base ‘ 𝑅 ) |
61 |
60
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) → 𝐶 ⊆ ( Base ‘ 𝑅 ) ) |
62 |
61
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → ( 𝐿 ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
63 |
19 51
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
64 |
4 63
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
65 |
64
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
66 |
19 48 58 62 65
|
grpcld |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ) |
67 |
35 36 2
|
cntri |
⊢ ( ( ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐿 ‘ 𝑛 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 𝑛 ) ) ) |
68 |
67
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐿 ‘ 𝑛 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 𝑛 ) ) ) |
69 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
70 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
71 |
19 23 51 69 70
|
ringlidmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = 𝑥 ) |
72 |
19 23 51 69 70
|
ringridmd |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) = 𝑥 ) |
73 |
71 72
|
eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
74 |
68 73
|
oveq12d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝐿 ‘ 𝑛 ) ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 𝑛 ) ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
75 |
62
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐿 ‘ 𝑛 ) ∈ ( Base ‘ 𝑅 ) ) |
76 |
69 63
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 1r ‘ 𝑅 ) ∈ ( Base ‘ 𝑅 ) ) |
77 |
19 48 23 69 75 76 70
|
ringdird |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( ( 𝐿 ‘ 𝑛 ) ( .r ‘ 𝑅 ) 𝑥 ) ( +g ‘ 𝑅 ) ( ( 1r ‘ 𝑅 ) ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
78 |
19 48 23 69 70 75 76
|
ringdid |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 𝑛 ) ) ( +g ‘ 𝑅 ) ( 𝑥 ( .r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
79 |
74 77 78
|
3eqtr4d |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
80 |
79
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) |
81 |
35 36 2
|
elcntr |
⊢ ( ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐶 ↔ ( ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ) ) |
82 |
66 80 81
|
sylanbrc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → ( ( 𝐿 ‘ 𝑛 ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐶 ) |
83 |
56 82
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ0 ) ∧ ( 𝐿 ‘ 𝑛 ) ∈ 𝐶 ) → ( 𝐿 ‘ ( 𝑛 + 1 ) ) ∈ 𝐶 ) |
84 |
9 11 13 15 38 83
|
nn0indd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℕ0 ) → ( 𝐿 ‘ 𝑚 ) ∈ 𝐶 ) |
85 |
84
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑚 ∈ ℕ0 ( 𝐿 ‘ 𝑚 ) ∈ 𝐶 ) |
86 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ∀ 𝑚 ∈ ℕ0 ( 𝐿 ‘ 𝑚 ) ∈ 𝐶 ) |
87 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℕ0 ) |
88 |
7 86 87
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ0 ) → ( 𝐿 ‘ 𝑁 ) ∈ 𝐶 ) |
89 |
46 19
|
rhmf |
⊢ ( 𝐿 ∈ ( ℤring RingHom 𝑅 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
90 |
4 39 89
|
3syl |
⊢ ( 𝜑 → 𝐿 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
91 |
90
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → 𝐿 : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
92 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
93 |
91 92
|
ffvelcdmd |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐿 ‘ 𝑁 ) ∈ ( Base ‘ 𝑅 ) ) |
94 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
95 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
96 |
|
fveq2 |
⊢ ( 𝑚 = - 𝑁 → ( 𝐿 ‘ 𝑚 ) = ( 𝐿 ‘ - 𝑁 ) ) |
97 |
96
|
eleq1d |
⊢ ( 𝑚 = - 𝑁 → ( ( 𝐿 ‘ 𝑚 ) ∈ 𝐶 ↔ ( 𝐿 ‘ - 𝑁 ) ∈ 𝐶 ) ) |
98 |
85
|
adantr |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → ∀ 𝑚 ∈ ℕ0 ( 𝐿 ‘ 𝑚 ) ∈ 𝐶 ) |
99 |
|
simpr |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → - 𝑁 ∈ ℕ0 ) |
100 |
97 98 99
|
rspcdva |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐿 ‘ - 𝑁 ) ∈ 𝐶 ) |
101 |
35 36 2
|
elcntr |
⊢ ( ( 𝐿 ‘ - 𝑁 ) ∈ 𝐶 ↔ ( ( 𝐿 ‘ - 𝑁 ) ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐿 ‘ - 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ - 𝑁 ) ) ) ) |
102 |
100 101
|
sylib |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → ( ( 𝐿 ‘ - 𝑁 ) ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐿 ‘ - 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ - 𝑁 ) ) ) ) |
103 |
102
|
simpld |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐿 ‘ - 𝑁 ) ∈ ( Base ‘ 𝑅 ) ) |
104 |
103
|
adantr |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐿 ‘ - 𝑁 ) ∈ ( Base ‘ 𝑅 ) ) |
105 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
106 |
19 23 94 95 104 105
|
ringmneg1 |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝐿 ‘ - 𝑁 ) ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( invg ‘ 𝑅 ) ‘ ( ( 𝐿 ‘ - 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
107 |
5
|
zcnd |
⊢ ( 𝜑 → 𝑁 ∈ ℂ ) |
108 |
107
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑁 ∈ ℂ ) |
109 |
108
|
negnegd |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → - - 𝑁 = 𝑁 ) |
110 |
5
|
znegcld |
⊢ ( 𝜑 → - 𝑁 ∈ ℤ ) |
111 |
|
zringinvg |
⊢ ( - 𝑁 ∈ ℤ → - - 𝑁 = ( ( invg ‘ ℤring ) ‘ - 𝑁 ) ) |
112 |
110 111
|
syl |
⊢ ( 𝜑 → - - 𝑁 = ( ( invg ‘ ℤring ) ‘ - 𝑁 ) ) |
113 |
112
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → - - 𝑁 = ( ( invg ‘ ℤring ) ‘ - 𝑁 ) ) |
114 |
109 113
|
eqtr3d |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝑁 = ( ( invg ‘ ℤring ) ‘ - 𝑁 ) ) |
115 |
114
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐿 ‘ 𝑁 ) = ( 𝐿 ‘ ( ( invg ‘ ℤring ) ‘ - 𝑁 ) ) ) |
116 |
95 39 40
|
3syl |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ) |
117 |
110
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → - 𝑁 ∈ ℤ ) |
118 |
|
eqid |
⊢ ( invg ‘ ℤring ) = ( invg ‘ ℤring ) |
119 |
46 118 94
|
ghminv |
⊢ ( ( 𝐿 ∈ ( ℤring GrpHom 𝑅 ) ∧ - 𝑁 ∈ ℤ ) → ( 𝐿 ‘ ( ( invg ‘ ℤring ) ‘ - 𝑁 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐿 ‘ - 𝑁 ) ) ) |
120 |
116 117 119
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐿 ‘ ( ( invg ‘ ℤring ) ‘ - 𝑁 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐿 ‘ - 𝑁 ) ) ) |
121 |
115 120
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝐿 ‘ 𝑁 ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝐿 ‘ - 𝑁 ) ) ) |
122 |
121
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐿 ‘ 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( ( ( invg ‘ 𝑅 ) ‘ ( 𝐿 ‘ - 𝑁 ) ) ( .r ‘ 𝑅 ) 𝑥 ) ) |
123 |
19 23 94 95 105 104
|
ringmneg2 |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐿 ‘ - 𝑁 ) ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ - 𝑁 ) ) ) ) |
124 |
121
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 𝑁 ) ) = ( 𝑥 ( .r ‘ 𝑅 ) ( ( invg ‘ 𝑅 ) ‘ ( 𝐿 ‘ - 𝑁 ) ) ) ) |
125 |
102
|
simprd |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐿 ‘ - 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ - 𝑁 ) ) ) |
126 |
125
|
r19.21bi |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐿 ‘ - 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ - 𝑁 ) ) ) |
127 |
126
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( invg ‘ 𝑅 ) ‘ ( ( 𝐿 ‘ - 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ - 𝑁 ) ) ) ) |
128 |
123 124 127
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 𝑁 ) ) = ( ( invg ‘ 𝑅 ) ‘ ( ( 𝐿 ‘ - 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) ) ) |
129 |
106 122 128
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝐿 ‘ 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 𝑁 ) ) ) |
130 |
129
|
ralrimiva |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐿 ‘ 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 𝑁 ) ) ) |
131 |
35 36 2
|
elcntr |
⊢ ( ( 𝐿 ‘ 𝑁 ) ∈ 𝐶 ↔ ( ( 𝐿 ‘ 𝑁 ) ∈ ( Base ‘ 𝑅 ) ∧ ∀ 𝑥 ∈ ( Base ‘ 𝑅 ) ( ( 𝐿 ‘ 𝑁 ) ( .r ‘ 𝑅 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( 𝐿 ‘ 𝑁 ) ) ) ) |
132 |
93 130 131
|
sylanbrc |
⊢ ( ( 𝜑 ∧ - 𝑁 ∈ ℕ0 ) → ( 𝐿 ‘ 𝑁 ) ∈ 𝐶 ) |
133 |
|
elznn0 |
⊢ ( 𝑁 ∈ ℤ ↔ ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
134 |
5 133
|
sylib |
⊢ ( 𝜑 → ( 𝑁 ∈ ℝ ∧ ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) ) |
135 |
134
|
simprd |
⊢ ( 𝜑 → ( 𝑁 ∈ ℕ0 ∨ - 𝑁 ∈ ℕ0 ) ) |
136 |
88 132 135
|
mpjaodan |
⊢ ( 𝜑 → ( 𝐿 ‘ 𝑁 ) ∈ 𝐶 ) |