Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iinrab2 | Unicode version |
Description: Indexed intersection of a restricted class builder. (Contributed by NM, 6-Dec-2011.) |
Ref | Expression |
---|---|
iinrab2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iineq1 4345 | . . . . . 6 | |
2 | 0iin 4388 | . . . . . 6 | |
3 | 1, 2 | syl6eq 2514 | . . . . 5 |
4 | 3 | ineq1d 3698 | . . . 4 |
5 | incom 3690 | . . . . 5 | |
6 | inv1 3812 | . . . . 5 | |
7 | 5, 6 | eqtri 2486 | . . . 4 |
8 | 4, 7 | syl6eq 2514 | . . 3 |
9 | rzal 3931 | . . . 4 | |
10 | rabid2 3035 | . . . . 5 | |
11 | ralcom 3018 | . . . . 5 | |
12 | 10, 11 | bitr2i 250 | . . . 4 |
13 | 9, 12 | sylib 196 | . . 3 |
14 | 8, 13 | eqtrd 2498 | . 2 |
15 | iinrab 4392 | . . . 4 | |
16 | 15 | ineq1d 3698 | . . 3 |
17 | ssrab2 3584 | . . . 4 | |
18 | dfss 3490 | . . . 4 | |
19 | 17, 18 | mpbi 208 | . . 3 |
20 | 16, 19 | syl6eqr 2516 | . 2 |
21 | 14, 20 | pm2.61ine 2770 | 1 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1395 =/= wne 2652
A. wral 2807 { crab 2811 cvv 3109
i^i cin 3474 C_ wss 3475 c0 3784 |^|_ ciin 4331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-in 3482 df-ss 3489 df-nul 3785 df-iin 4333 |
Copyright terms: Public domain | W3C validator |