MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab2 Unicode version

Theorem iinrab2 4393
Description: Indexed intersection of a restricted class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab2
Distinct variable groups:   , ,   , ,

Proof of Theorem iinrab2
StepHypRef Expression
1 iineq1 4345 . . . . . 6
2 0iin 4388 . . . . . 6
31, 2syl6eq 2514 . . . . 5
43ineq1d 3698 . . . 4
5 incom 3690 . . . . 5
6 inv1 3812 . . . . 5
75, 6eqtri 2486 . . . 4
84, 7syl6eq 2514 . . 3
9 rzal 3931 . . . 4
10 rabid2 3035 . . . . 5
11 ralcom 3018 . . . . 5
1210, 11bitr2i 250 . . . 4
139, 12sylib 196 . . 3
148, 13eqtrd 2498 . 2
15 iinrab 4392 . . . 4
1615ineq1d 3698 . . 3
17 ssrab2 3584 . . . 4
18 dfss 3490 . . . 4
1917, 18mpbi 208 . . 3
2016, 19syl6eqr 2516 . 2
2114, 20pm2.61ine 2770 1
Colors of variables: wff setvar class
Syntax hints:  =wceq 1395  =/=wne 2652  A.wral 2807  {crab 2811   cvv 3109  i^icin 3474  C_wss 3475   c0 3784  |^|_ciin 4331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rab 2816  df-v 3111  df-dif 3478  df-in 3482  df-ss 3489  df-nul 3785  df-iin 4333
  Copyright terms: Public domain W3C validator