Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > intasym | Unicode version |
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
intasym |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5379 | . . 3 | |
2 | relin2 5126 | . . 3 | |
3 | ssrel 5096 | . . 3 | |
4 | 1, 2, 3 | mp2b 10 | . 2 |
5 | elin 3686 | . . . . 5 | |
6 | df-br 4453 | . . . . . 6 | |
7 | vex 3112 | . . . . . . . 8 | |
8 | vex 3112 | . . . . . . . 8 | |
9 | 7, 8 | brcnv 5190 | . . . . . . 7 |
10 | df-br 4453 | . . . . . . 7 | |
11 | 9, 10 | bitr3i 251 | . . . . . 6 |
12 | 6, 11 | anbi12i 697 | . . . . 5 |
13 | 5, 12 | bitr4i 252 | . . . 4 |
14 | df-br 4453 | . . . . 5 | |
15 | 8 | ideq 5160 | . . . . 5 |
16 | 14, 15 | bitr3i 251 | . . . 4 |
17 | 13, 16 | imbi12i 326 | . . 3 |
18 | 17 | 2albii 1641 | . 2 |
19 | 4, 18 | bitri 249 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 e. wcel 1818
i^i cin 3474 C_ wss 3475 <. cop 4035
class class class wbr 4452 cid 4795
`' ccnv 5003 Rel wrel 5009 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-cnv 5012 |
Copyright terms: Public domain | W3C validator |