MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  intasym Unicode version

Theorem intasym 5387
Description: Two ways of saying a relation is antisymmetric. Definition of antisymmetry in [Schechter] p. 51. (Contributed by NM, 9-Sep-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Assertion
Ref Expression
intasym
Distinct variable group:   , ,

Proof of Theorem intasym
StepHypRef Expression
1 relcnv 5379 . . 3
2 relin2 5126 . . 3
3 ssrel 5096 . . 3
41, 2, 3mp2b 10 . 2
5 elin 3686 . . . . 5
6 df-br 4453 . . . . . 6
7 vex 3112 . . . . . . . 8
8 vex 3112 . . . . . . . 8
97, 8brcnv 5190 . . . . . . 7
10 df-br 4453 . . . . . . 7
119, 10bitr3i 251 . . . . . 6
126, 11anbi12i 697 . . . . 5
135, 12bitr4i 252 . . . 4
14 df-br 4453 . . . . 5
158ideq 5160 . . . . 5
1614, 15bitr3i 251 . . . 4
1713, 16imbi12i 326 . . 3
18172albii 1641 . 2
194, 18bitri 249 1
Colors of variables: wff setvar class
Syntax hints:  ->wi 4  <->wb 184  /\wa 369  A.wal 1393  e.wcel 1818  i^icin 3474  C_wss 3475  <.cop 4035   class class class wbr 4452   cid 4795  `'ccnv 5003  Relwrel 5009
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-9 1822  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435  ax-sep 4573  ax-nul 4581  ax-pr 4691
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-eu 2286  df-mo 2287  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ne 2654  df-ral 2812  df-rex 2813  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-opab 4511  df-id 4800  df-xp 5010  df-rel 5011  df-cnv 5012
  Copyright terms: Public domain W3C validator