Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > iss | Unicode version |
Description: A subclass of the identity function is the identity function restricted to its domain. (Contributed by NM, 13-Dec-2003.) (Proof shortened by Andrew Salmon, 27-Aug-2011.) |
Ref | Expression |
---|---|
iss |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3497 | . . . . . . 7 | |
2 | vex 3112 | . . . . . . . . 9 | |
3 | vex 3112 | . . . . . . . . 9 | |
4 | 2, 3 | opeldm 5211 | . . . . . . . 8 |
5 | 4 | a1i 11 | . . . . . . 7 |
6 | 1, 5 | jcad 533 | . . . . . 6 |
7 | df-br 4453 | . . . . . . . . 9 | |
8 | 3 | ideq 5160 | . . . . . . . . 9 |
9 | 7, 8 | bitr3i 251 | . . . . . . . 8 |
10 | 2 | eldm2 5206 | . . . . . . . . . 10 |
11 | opeq2 4218 | . . . . . . . . . . . . . . 15 | |
12 | 11 | eleq1d 2526 | . . . . . . . . . . . . . 14 |
13 | 12 | biimprcd 225 | . . . . . . . . . . . . 13 |
14 | 9, 13 | syl5bi 217 | . . . . . . . . . . . 12 |
15 | 1, 14 | sylcom 29 | . . . . . . . . . . 11 |
16 | 15 | exlimdv 1724 | . . . . . . . . . 10 |
17 | 10, 16 | syl5bi 217 | . . . . . . . . 9 |
18 | 12 | imbi2d 316 | . . . . . . . . 9 |
19 | 17, 18 | syl5ibcom 220 | . . . . . . . 8 |
20 | 9, 19 | syl5bi 217 | . . . . . . 7 |
21 | 20 | impd 431 | . . . . . 6 |
22 | 6, 21 | impbid 191 | . . . . 5 |
23 | 3 | opelres 5284 | . . . . 5 |
24 | 22, 23 | syl6bbr 263 | . . . 4 |
25 | 24 | alrimivv 1720 | . . 3 |
26 | reli 5135 | . . . . 5 | |
27 | relss 5095 | . . . . 5 | |
28 | 26, 27 | mpi 17 | . . . 4 |
29 | relres 5306 | . . . 4 | |
30 | eqrel 5097 | . . . 4 | |
31 | 28, 29, 30 | sylancl 662 | . . 3 |
32 | 25, 31 | mpbird 232 | . 2 |
33 | resss 5302 | . . 3 | |
34 | sseq1 3524 | . . 3 | |
35 | 33, 34 | mpbiri 233 | . 2 |
36 | 32, 35 | impbii 188 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -> wi 4 <-> wb 184
/\ wa 369 A. wal 1393 = wceq 1395
E. wex 1612 e. wcel 1818 C_ wss 3475
<. cop 4035 class class class wbr 4452
cid 4795
dom cdm 5004 |` cres 5006 Rel wrel 5009 |
This theorem is referenced by: funcocnv2 5845 trust 20732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-9 1822 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 ax-sep 4573 ax-nul 4581 ax-pr 4691 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-eu 2286 df-mo 2287 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ne 2654 df-ral 2812 df-rex 2813 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-opab 4511 df-id 4800 df-xp 5010 df-rel 5011 df-dm 5014 df-res 5016 |
Copyright terms: Public domain | W3C validator |