MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isso2i Unicode version

Theorem isso2i 4837
Description: Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.)
Hypotheses
Ref Expression
isso2i.1
isso2i.2
Assertion
Ref Expression
isso2i
Distinct variable groups:   , , ,   , , ,

Proof of Theorem isso2i
StepHypRef Expression
1 equid 1791 . . . . 5
21orci 390 . . . 4
3 eleq1 2529 . . . . . . 7
43anbi2d 703 . . . . . 6
5 equequ2 1799 . . . . . . . 8
6 breq1 4455 . . . . . . . 8
75, 6orbi12d 709 . . . . . . 7
8 breq2 4456 . . . . . . . 8
98notbid 294 . . . . . . 7
107, 9bibi12d 321 . . . . . 6
114, 10imbi12d 320 . . . . 5
12 isso2i.1 . . . . . 6
1312con2bid 329 . . . . 5
1411, 13chvarv 2014 . . . 4
152, 14mpbii 211 . . 3
1615anidms 645 . 2
17 isso2i.2 . 2
1813biimprd 223 . . 3
19 3orass 976 . . . 4
20 df-or 370 . . . 4
2119, 20bitri 249 . . 3
2218, 21sylibr 212 . 2
2316, 17, 22issoi 4836 1
Colors of variables: wff setvar class
Syntax hints:  -.wn 3  ->wi 4  <->wb 184  \/wo 368  /\wa 369  \/w3o 972  /\w3a 973  e.wcel 1818   class class class wbr 4452  Orwor 4804
This theorem is referenced by:  ltsonq  9368  ltsosr  9492  ltso  9686  xrltso  11376
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1618  ax-4 1631  ax-5 1704  ax-6 1747  ax-7 1790  ax-10 1837  ax-11 1842  ax-12 1854  ax-13 1999  ax-ext 2435
This theorem depends on definitions:  df-bi 185  df-or 370  df-an 371  df-3or 974  df-3an 975  df-tru 1398  df-ex 1613  df-nf 1617  df-sb 1740  df-clab 2443  df-cleq 2449  df-clel 2452  df-nfc 2607  df-ral 2812  df-rab 2816  df-v 3111  df-dif 3478  df-un 3480  df-in 3482  df-ss 3489  df-nul 3785  df-if 3942  df-sn 4030  df-pr 4032  df-op 4036  df-br 4453  df-po 4805  df-so 4806
  Copyright terms: Public domain W3C validator