Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > isso2i | Unicode version |
Description: Deduce strict ordering from its properties. (Contributed by NM, 29-Jan-1996.) (Revised by Mario Carneiro, 9-Jul-2014.) |
Ref | Expression |
---|---|
isso2i.1 | |
isso2i.2 |
Ref | Expression |
---|---|
isso2i |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | equid 1791 | . . . . 5 | |
2 | 1 | orci 390 | . . . 4 |
3 | eleq1 2529 | . . . . . . 7 | |
4 | 3 | anbi2d 703 | . . . . . 6 |
5 | equequ2 1799 | . . . . . . . 8 | |
6 | breq1 4455 | . . . . . . . 8 | |
7 | 5, 6 | orbi12d 709 | . . . . . . 7 |
8 | breq2 4456 | . . . . . . . 8 | |
9 | 8 | notbid 294 | . . . . . . 7 |
10 | 7, 9 | bibi12d 321 | . . . . . 6 |
11 | 4, 10 | imbi12d 320 | . . . . 5 |
12 | isso2i.1 | . . . . . 6 | |
13 | 12 | con2bid 329 | . . . . 5 |
14 | 11, 13 | chvarv 2014 | . . . 4 |
15 | 2, 14 | mpbii 211 | . . 3 |
16 | 15 | anidms 645 | . 2 |
17 | isso2i.2 | . 2 | |
18 | 13 | biimprd 223 | . . 3 |
19 | 3orass 976 | . . . 4 | |
20 | df-or 370 | . . . 4 | |
21 | 19, 20 | bitri 249 | . . 3 |
22 | 18, 21 | sylibr 212 | . 2 |
23 | 16, 17, 22 | issoi 4836 | 1 |
Colors of variables: wff setvar class |
Syntax hints: -. wn 3 -> wi 4
<-> wb 184 \/ wo 368 /\ wa 369
\/ w3o 972 /\ w3a 973 e. wcel 1818
class class class wbr 4452 Or wor 4804 |
This theorem is referenced by: ltsonq 9368 ltsosr 9492 ltso 9686 xrltso 11376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1618 ax-4 1631 ax-5 1704 ax-6 1747 ax-7 1790 ax-10 1837 ax-11 1842 ax-12 1854 ax-13 1999 ax-ext 2435 |
This theorem depends on definitions: df-bi 185 df-or 370 df-an 371 df-3or 974 df-3an 975 df-tru 1398 df-ex 1613 df-nf 1617 df-sb 1740 df-clab 2443 df-cleq 2449 df-clel 2452 df-nfc 2607 df-ral 2812 df-rab 2816 df-v 3111 df-dif 3478 df-un 3480 df-in 3482 df-ss 3489 df-nul 3785 df-if 3942 df-sn 4030 df-pr 4032 df-op 4036 df-br 4453 df-po 4805 df-so 4806 |
Copyright terms: Public domain | W3C validator |