| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0pth.v |
|- V = ( Vtx ` G ) |
| 2 |
|
ispth |
|- ( (/) ( Paths ` G ) P <-> ( (/) ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) ) |
| 3 |
2
|
a1i |
|- ( G e. W -> ( (/) ( Paths ` G ) P <-> ( (/) ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) ) ) |
| 4 |
|
3anass |
|- ( ( (/) ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) <-> ( (/) ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) ) ) |
| 5 |
4
|
a1i |
|- ( G e. W -> ( ( (/) ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) <-> ( (/) ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) ) ) ) |
| 6 |
|
funcnv0 |
|- Fun `' (/) |
| 7 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 8 |
|
0le1 |
|- 0 <_ 1 |
| 9 |
7 8
|
eqbrtri |
|- ( # ` (/) ) <_ 1 |
| 10 |
|
1z |
|- 1 e. ZZ |
| 11 |
|
0z |
|- 0 e. ZZ |
| 12 |
7 11
|
eqeltri |
|- ( # ` (/) ) e. ZZ |
| 13 |
|
fzon |
|- ( ( 1 e. ZZ /\ ( # ` (/) ) e. ZZ ) -> ( ( # ` (/) ) <_ 1 <-> ( 1 ..^ ( # ` (/) ) ) = (/) ) ) |
| 14 |
10 12 13
|
mp2an |
|- ( ( # ` (/) ) <_ 1 <-> ( 1 ..^ ( # ` (/) ) ) = (/) ) |
| 15 |
9 14
|
mpbi |
|- ( 1 ..^ ( # ` (/) ) ) = (/) |
| 16 |
15
|
reseq2i |
|- ( P |` ( 1 ..^ ( # ` (/) ) ) ) = ( P |` (/) ) |
| 17 |
|
res0 |
|- ( P |` (/) ) = (/) |
| 18 |
16 17
|
eqtri |
|- ( P |` ( 1 ..^ ( # ` (/) ) ) ) = (/) |
| 19 |
18
|
cnveqi |
|- `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) = `' (/) |
| 20 |
19
|
funeqi |
|- ( Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) <-> Fun `' (/) ) |
| 21 |
6 20
|
mpbir |
|- Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) |
| 22 |
15
|
imaeq2i |
|- ( P " ( 1 ..^ ( # ` (/) ) ) ) = ( P " (/) ) |
| 23 |
|
ima0 |
|- ( P " (/) ) = (/) |
| 24 |
22 23
|
eqtri |
|- ( P " ( 1 ..^ ( # ` (/) ) ) ) = (/) |
| 25 |
24
|
ineq2i |
|- ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = ( ( P " { 0 , ( # ` (/) ) } ) i^i (/) ) |
| 26 |
|
in0 |
|- ( ( P " { 0 , ( # ` (/) ) } ) i^i (/) ) = (/) |
| 27 |
25 26
|
eqtri |
|- ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) |
| 28 |
21 27
|
pm3.2i |
|- ( Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) |
| 29 |
28
|
biantru |
|- ( (/) ( Trails ` G ) P <-> ( (/) ( Trails ` G ) P /\ ( Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) ) ) |
| 30 |
5 29
|
bitr4di |
|- ( G e. W -> ( ( (/) ( Trails ` G ) P /\ Fun `' ( P |` ( 1 ..^ ( # ` (/) ) ) ) /\ ( ( P " { 0 , ( # ` (/) ) } ) i^i ( P " ( 1 ..^ ( # ` (/) ) ) ) ) = (/) ) <-> (/) ( Trails ` G ) P ) ) |
| 31 |
1
|
0trl |
|- ( G e. W -> ( (/) ( Trails ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |
| 32 |
3 30 31
|
3bitrd |
|- ( G e. W -> ( (/) ( Paths ` G ) P <-> P : ( 0 ... 0 ) --> V ) ) |