| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ring.b |
|- B = ( Base ` R ) |
| 2 |
|
0ring.0 |
|- .0. = ( 0g ` R ) |
| 3 |
|
0ring01eq.1 |
|- .1. = ( 1r ` R ) |
| 4 |
1
|
fvexi |
|- B e. _V |
| 5 |
|
hashen1 |
|- ( B e. _V -> ( ( # ` B ) = 1 <-> B ~~ 1o ) ) |
| 6 |
4 5
|
mp1i |
|- ( R e. Ring -> ( ( # ` B ) = 1 <-> B ~~ 1o ) ) |
| 7 |
1 2 3
|
0ring01eq |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .0. = .1. ) |
| 8 |
7
|
eqcomd |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> .1. = .0. ) |
| 9 |
8
|
ex |
|- ( R e. Ring -> ( ( # ` B ) = 1 -> .1. = .0. ) ) |
| 10 |
|
eqcom |
|- ( .1. = .0. <-> .0. = .1. ) |
| 11 |
1 2 3
|
01eq0ring |
|- ( ( R e. Ring /\ .0. = .1. ) -> B = { .0. } ) |
| 12 |
|
fveq2 |
|- ( B = { .0. } -> ( # ` B ) = ( # ` { .0. } ) ) |
| 13 |
2
|
fvexi |
|- .0. e. _V |
| 14 |
|
hashsng |
|- ( .0. e. _V -> ( # ` { .0. } ) = 1 ) |
| 15 |
13 14
|
mp1i |
|- ( B = { .0. } -> ( # ` { .0. } ) = 1 ) |
| 16 |
12 15
|
eqtrd |
|- ( B = { .0. } -> ( # ` B ) = 1 ) |
| 17 |
11 16
|
syl |
|- ( ( R e. Ring /\ .0. = .1. ) -> ( # ` B ) = 1 ) |
| 18 |
17
|
ex |
|- ( R e. Ring -> ( .0. = .1. -> ( # ` B ) = 1 ) ) |
| 19 |
10 18
|
biimtrid |
|- ( R e. Ring -> ( .1. = .0. -> ( # ` B ) = 1 ) ) |
| 20 |
9 19
|
impbid |
|- ( R e. Ring -> ( ( # ` B ) = 1 <-> .1. = .0. ) ) |
| 21 |
6 20
|
bitr3d |
|- ( R e. Ring -> ( B ~~ 1o <-> .1. = .0. ) ) |