Metamath Proof Explorer


Theorem 0ring01eqbi

Description: In a unital ring the zero equals the unity iff the ring is the zero ring. (Contributed by FL, 14-Feb-2010) (Revised by AV, 23-Jan-2020)

Ref Expression
Hypotheses 0ring.b B = Base R
0ring.0 0 ˙ = 0 R
0ring01eq.1 1 ˙ = 1 R
Assertion 0ring01eqbi R Ring B 1 𝑜 1 ˙ = 0 ˙

Proof

Step Hyp Ref Expression
1 0ring.b B = Base R
2 0ring.0 0 ˙ = 0 R
3 0ring01eq.1 1 ˙ = 1 R
4 1 fvexi B V
5 hashen1 B V B = 1 B 1 𝑜
6 4 5 mp1i R Ring B = 1 B 1 𝑜
7 1 2 3 0ring01eq R Ring B = 1 0 ˙ = 1 ˙
8 7 eqcomd R Ring B = 1 1 ˙ = 0 ˙
9 8 ex R Ring B = 1 1 ˙ = 0 ˙
10 eqcom 1 ˙ = 0 ˙ 0 ˙ = 1 ˙
11 1 2 3 01eq0ring R Ring 0 ˙ = 1 ˙ B = 0 ˙
12 fveq2 B = 0 ˙ B = 0 ˙
13 2 fvexi 0 ˙ V
14 hashsng 0 ˙ V 0 ˙ = 1
15 13 14 mp1i B = 0 ˙ 0 ˙ = 1
16 12 15 eqtrd B = 0 ˙ B = 1
17 11 16 syl R Ring 0 ˙ = 1 ˙ B = 1
18 17 ex R Ring 0 ˙ = 1 ˙ B = 1
19 10 18 syl5bi R Ring 1 ˙ = 0 ˙ B = 1
20 9 19 impbid R Ring B = 1 1 ˙ = 0 ˙
21 6 20 bitr3d R Ring B 1 𝑜 1 ˙ = 0 ˙