| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ringcring.1 |
|- B = ( Base ` R ) |
| 2 |
|
0ringcring.2 |
|- ( ph -> R e. Ring ) |
| 3 |
|
0ringcring.3 |
|- ( ph -> ( # ` B ) = 1 ) |
| 4 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
| 5 |
4 1
|
mgpbas |
|- B = ( Base ` ( mulGrp ` R ) ) |
| 6 |
5
|
a1i |
|- ( ph -> B = ( Base ` ( mulGrp ` R ) ) ) |
| 7 |
|
eqid |
|- ( .r ` R ) = ( .r ` R ) |
| 8 |
4 7
|
mgpplusg |
|- ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) |
| 9 |
8
|
a1i |
|- ( ph -> ( .r ` R ) = ( +g ` ( mulGrp ` R ) ) ) |
| 10 |
4
|
ringmgp |
|- ( R e. Ring -> ( mulGrp ` R ) e. Mnd ) |
| 11 |
2 10
|
syl |
|- ( ph -> ( mulGrp ` R ) e. Mnd ) |
| 12 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 13 |
2
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> R e. Ring ) |
| 14 |
|
simp3 |
|- ( ( ph /\ x e. B /\ y e. B ) -> y e. B ) |
| 15 |
1 7 12 13 14
|
ringlzd |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( ( 0g ` R ) ( .r ` R ) y ) = ( 0g ` R ) ) |
| 16 |
1 7 12 13 14
|
ringrzd |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( y ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) |
| 17 |
15 16
|
eqtr4d |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( ( 0g ` R ) ( .r ` R ) y ) = ( y ( .r ` R ) ( 0g ` R ) ) ) |
| 18 |
|
simp2 |
|- ( ( ph /\ x e. B /\ y e. B ) -> x e. B ) |
| 19 |
1 12
|
0ring |
|- ( ( R e. Ring /\ ( # ` B ) = 1 ) -> B = { ( 0g ` R ) } ) |
| 20 |
2 3 19
|
syl2anc |
|- ( ph -> B = { ( 0g ` R ) } ) |
| 21 |
20
|
3ad2ant1 |
|- ( ( ph /\ x e. B /\ y e. B ) -> B = { ( 0g ` R ) } ) |
| 22 |
18 21
|
eleqtrd |
|- ( ( ph /\ x e. B /\ y e. B ) -> x e. { ( 0g ` R ) } ) |
| 23 |
|
elsni |
|- ( x e. { ( 0g ` R ) } -> x = ( 0g ` R ) ) |
| 24 |
22 23
|
syl |
|- ( ( ph /\ x e. B /\ y e. B ) -> x = ( 0g ` R ) ) |
| 25 |
24
|
oveq1d |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x ( .r ` R ) y ) = ( ( 0g ` R ) ( .r ` R ) y ) ) |
| 26 |
24
|
oveq2d |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( y ( .r ` R ) x ) = ( y ( .r ` R ) ( 0g ` R ) ) ) |
| 27 |
17 25 26
|
3eqtr4d |
|- ( ( ph /\ x e. B /\ y e. B ) -> ( x ( .r ` R ) y ) = ( y ( .r ` R ) x ) ) |
| 28 |
6 9 11 27
|
iscmnd |
|- ( ph -> ( mulGrp ` R ) e. CMnd ) |
| 29 |
4
|
iscrng |
|- ( R e. CRing <-> ( R e. Ring /\ ( mulGrp ` R ) e. CMnd ) ) |
| 30 |
2 28 29
|
sylanbrc |
|- ( ph -> R e. CRing ) |