| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fveq2 |
|- ( X = (/) -> ( TotBnd ` X ) = ( TotBnd ` (/) ) ) |
| 2 |
1
|
eleq2d |
|- ( X = (/) -> ( M e. ( TotBnd ` X ) <-> M e. ( TotBnd ` (/) ) ) ) |
| 3 |
|
0elpw |
|- (/) e. ~P (/) |
| 4 |
|
0fi |
|- (/) e. Fin |
| 5 |
|
elin |
|- ( (/) e. ( ~P (/) i^i Fin ) <-> ( (/) e. ~P (/) /\ (/) e. Fin ) ) |
| 6 |
3 4 5
|
mpbir2an |
|- (/) e. ( ~P (/) i^i Fin ) |
| 7 |
|
0iun |
|- U_ x e. (/) ( x ( ball ` M ) r ) = (/) |
| 8 |
|
iuneq1 |
|- ( v = (/) -> U_ x e. v ( x ( ball ` M ) r ) = U_ x e. (/) ( x ( ball ` M ) r ) ) |
| 9 |
8
|
eqeq1d |
|- ( v = (/) -> ( U_ x e. v ( x ( ball ` M ) r ) = (/) <-> U_ x e. (/) ( x ( ball ` M ) r ) = (/) ) ) |
| 10 |
9
|
rspcev |
|- ( ( (/) e. ( ~P (/) i^i Fin ) /\ U_ x e. (/) ( x ( ball ` M ) r ) = (/) ) -> E. v e. ( ~P (/) i^i Fin ) U_ x e. v ( x ( ball ` M ) r ) = (/) ) |
| 11 |
6 7 10
|
mp2an |
|- E. v e. ( ~P (/) i^i Fin ) U_ x e. v ( x ( ball ` M ) r ) = (/) |
| 12 |
11
|
rgenw |
|- A. r e. RR+ E. v e. ( ~P (/) i^i Fin ) U_ x e. v ( x ( ball ` M ) r ) = (/) |
| 13 |
|
istotbnd3 |
|- ( M e. ( TotBnd ` (/) ) <-> ( M e. ( Met ` (/) ) /\ A. r e. RR+ E. v e. ( ~P (/) i^i Fin ) U_ x e. v ( x ( ball ` M ) r ) = (/) ) ) |
| 14 |
12 13
|
mpbiran2 |
|- ( M e. ( TotBnd ` (/) ) <-> M e. ( Met ` (/) ) ) |
| 15 |
|
fveq2 |
|- ( X = (/) -> ( Met ` X ) = ( Met ` (/) ) ) |
| 16 |
15
|
eleq2d |
|- ( X = (/) -> ( M e. ( Met ` X ) <-> M e. ( Met ` (/) ) ) ) |
| 17 |
14 16
|
bitr4id |
|- ( X = (/) -> ( M e. ( TotBnd ` (/) ) <-> M e. ( Met ` X ) ) ) |
| 18 |
2 17
|
bitrd |
|- ( X = (/) -> ( M e. ( TotBnd ` X ) <-> M e. ( Met ` X ) ) ) |