| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0wlk.v |
|- V = ( Vtx ` G ) |
| 2 |
|
s1val |
|- ( N e. V -> <" N "> = { <. 0 , N >. } ) |
| 3 |
|
0z |
|- 0 e. ZZ |
| 4 |
3
|
jctl |
|- ( N e. V -> ( 0 e. ZZ /\ N e. V ) ) |
| 5 |
|
f1sng |
|- ( ( 0 e. ZZ /\ N e. V ) -> { <. 0 , N >. } : { 0 } -1-1-> V ) |
| 6 |
|
f1f |
|- ( { <. 0 , N >. } : { 0 } -1-1-> V -> { <. 0 , N >. } : { 0 } --> V ) |
| 7 |
4 5 6
|
3syl |
|- ( N e. V -> { <. 0 , N >. } : { 0 } --> V ) |
| 8 |
|
id |
|- ( <" N "> = { <. 0 , N >. } -> <" N "> = { <. 0 , N >. } ) |
| 9 |
|
fzsn |
|- ( 0 e. ZZ -> ( 0 ... 0 ) = { 0 } ) |
| 10 |
3 9
|
mp1i |
|- ( <" N "> = { <. 0 , N >. } -> ( 0 ... 0 ) = { 0 } ) |
| 11 |
8 10
|
feq12d |
|- ( <" N "> = { <. 0 , N >. } -> ( <" N "> : ( 0 ... 0 ) --> V <-> { <. 0 , N >. } : { 0 } --> V ) ) |
| 12 |
7 11
|
syl5ibrcom |
|- ( N e. V -> ( <" N "> = { <. 0 , N >. } -> <" N "> : ( 0 ... 0 ) --> V ) ) |
| 13 |
2 12
|
mpd |
|- ( N e. V -> <" N "> : ( 0 ... 0 ) --> V ) |
| 14 |
|
s1fv |
|- ( N e. V -> ( <" N "> ` 0 ) = N ) |
| 15 |
1
|
0wlkon |
|- ( ( <" N "> : ( 0 ... 0 ) --> V /\ ( <" N "> ` 0 ) = N ) -> (/) ( N ( WalksOn ` G ) N ) <" N "> ) |
| 16 |
13 14 15
|
syl2anc |
|- ( N e. V -> (/) ( N ( WalksOn ` G ) N ) <" N "> ) |