Metamath Proof Explorer


Theorem 0wlkons1

Description: A walk of length 0 from a vertex to itself. (Contributed by AV, 17-Apr-2021)

Ref Expression
Hypothesis 0wlk.v V = Vtx G
Assertion 0wlkons1 N V N WalksOn G N ⟨“ N ”⟩

Proof

Step Hyp Ref Expression
1 0wlk.v V = Vtx G
2 s1val N V ⟨“ N ”⟩ = 0 N
3 0z 0
4 3 jctl N V 0 N V
5 f1sng 0 N V 0 N : 0 1-1 V
6 f1f 0 N : 0 1-1 V 0 N : 0 V
7 4 5 6 3syl N V 0 N : 0 V
8 id ⟨“ N ”⟩ = 0 N ⟨“ N ”⟩ = 0 N
9 fzsn 0 0 0 = 0
10 3 9 mp1i ⟨“ N ”⟩ = 0 N 0 0 = 0
11 8 10 feq12d ⟨“ N ”⟩ = 0 N ⟨“ N ”⟩ : 0 0 V 0 N : 0 V
12 7 11 syl5ibrcom N V ⟨“ N ”⟩ = 0 N ⟨“ N ”⟩ : 0 0 V
13 2 12 mpd N V ⟨“ N ”⟩ : 0 0 V
14 s1fv N V ⟨“ N ”⟩ 0 = N
15 1 0wlkon ⟨“ N ”⟩ : 0 0 V ⟨“ N ”⟩ 0 = N N WalksOn G N ⟨“ N ”⟩
16 13 14 15 syl2anc N V N WalksOn G N ⟨“ N ”⟩