Database
GRAPH THEORY
Walks, paths and cycles
Examples for walks, trails and paths
0wlkons1
Next ⟩
0trl
Metamath Proof Explorer
Ascii
Unicode
Theorem
0wlkons1
Description:
A walk of length 0 from a vertex to itself.
(Contributed by
AV
, 17-Apr-2021)
Ref
Expression
Hypothesis
0wlk.v
⊢
V
=
Vtx
⁡
G
Assertion
0wlkons1
⊢
N
∈
V
→
∅
N
WalksOn
⁡
G
N
〈“
N
”〉
Proof
Step
Hyp
Ref
Expression
1
0wlk.v
⊢
V
=
Vtx
⁡
G
2
s1val
⊢
N
∈
V
→
〈“
N
”〉
=
0
N
3
0z
⊢
0
∈
ℤ
4
3
jctl
⊢
N
∈
V
→
0
∈
ℤ
∧
N
∈
V
5
f1sng
⊢
0
∈
ℤ
∧
N
∈
V
→
0
N
:
0
⟶
1-1
V
6
f1f
⊢
0
N
:
0
⟶
1-1
V
→
0
N
:
0
⟶
V
7
4
5
6
3syl
⊢
N
∈
V
→
0
N
:
0
⟶
V
8
id
⊢
〈“
N
”〉
=
0
N
→
〈“
N
”〉
=
0
N
9
fzsn
⊢
0
∈
ℤ
→
0
…
0
=
0
10
3
9
mp1i
⊢
〈“
N
”〉
=
0
N
→
0
…
0
=
0
11
8
10
feq12d
⊢
〈“
N
”〉
=
0
N
→
〈“
N
”〉
:
0
…
0
⟶
V
↔
0
N
:
0
⟶
V
12
7
11
syl5ibrcom
⊢
N
∈
V
→
〈“
N
”〉
=
0
N
→
〈“
N
”〉
:
0
…
0
⟶
V
13
2
12
mpd
⊢
N
∈
V
→
〈“
N
”〉
:
0
…
0
⟶
V
14
s1fv
⊢
N
∈
V
→
〈“
N
”〉
⁡
0
=
N
15
1
0wlkon
⊢
〈“
N
”〉
:
0
…
0
⟶
V
∧
〈“
N
”〉
⁡
0
=
N
→
∅
N
WalksOn
⁡
G
N
〈“
N
”〉
16
13
14
15
syl2anc
⊢
N
∈
V
→
∅
N
WalksOn
⁡
G
N
〈“
N
”〉