Metamath Proof Explorer


Theorem 0wlkons1

Description: A walk of length 0 from a vertex to itself. (Contributed by AV, 17-Apr-2021)

Ref Expression
Hypothesis 0wlk.v V=VtxG
Assertion 0wlkons1 NVNWalksOnGN⟨“N”⟩

Proof

Step Hyp Ref Expression
1 0wlk.v V=VtxG
2 s1val NV⟨“N”⟩=0N
3 0z 0
4 3 jctl NV0NV
5 f1sng 0NV0N:01-1V
6 f1f 0N:01-1V0N:0V
7 4 5 6 3syl NV0N:0V
8 id ⟨“N”⟩=0N⟨“N”⟩=0N
9 fzsn 000=0
10 3 9 mp1i ⟨“N”⟩=0N00=0
11 8 10 feq12d ⟨“N”⟩=0N⟨“N”⟩:00V0N:0V
12 7 11 syl5ibrcom NV⟨“N”⟩=0N⟨“N”⟩:00V
13 2 12 mpd NV⟨“N”⟩:00V
14 s1fv NV⟨“N”⟩0=N
15 1 0wlkon ⟨“N”⟩:00V⟨“N”⟩0=NNWalksOnGN⟨“N”⟩
16 13 14 15 syl2anc NVNWalksOnGN⟨“N”⟩