Step |
Hyp |
Ref |
Expression |
1 |
|
2503prm.1 |
|- N = ; ; ; 2 5 0 3 |
2 |
|
139prm |
|- ; ; 1 3 9 e. Prime |
3 |
|
1nn0 |
|- 1 e. NN0 |
4 |
|
8nn |
|- 8 e. NN |
5 |
3 4
|
decnncl |
|- ; 1 8 e. NN |
6 |
|
2nn0 |
|- 2 e. NN0 |
7 |
|
5nn0 |
|- 5 e. NN0 |
8 |
6 7
|
deccl |
|- ; 2 5 e. NN0 |
9 |
|
0nn0 |
|- 0 e. NN0 |
10 |
8 9
|
deccl |
|- ; ; 2 5 0 e. NN0 |
11 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
12 |
|
eqid |
|- ; ; ; 2 5 0 2 = ; ; ; 2 5 0 2 |
13 |
10 6 11 12
|
decsuc |
|- ( ; ; ; 2 5 0 2 + 1 ) = ; ; ; 2 5 0 3 |
14 |
1 13
|
eqtr4i |
|- N = ( ; ; ; 2 5 0 2 + 1 ) |
15 |
14
|
oveq1i |
|- ( N - 1 ) = ( ( ; ; ; 2 5 0 2 + 1 ) - 1 ) |
16 |
|
8nn0 |
|- 8 e. NN0 |
17 |
3 16
|
deccl |
|- ; 1 8 e. NN0 |
18 |
|
3nn0 |
|- 3 e. NN0 |
19 |
3 18
|
deccl |
|- ; 1 3 e. NN0 |
20 |
|
9nn0 |
|- 9 e. NN0 |
21 |
|
eqid |
|- ; ; 1 3 9 = ; ; 1 3 9 |
22 |
|
6nn0 |
|- 6 e. NN0 |
23 |
3 22
|
deccl |
|- ; 1 6 e. NN0 |
24 |
|
eqid |
|- ; 1 3 = ; 1 3 |
25 |
|
eqid |
|- ; 1 6 = ; 1 6 |
26 |
|
7nn0 |
|- 7 e. NN0 |
27 |
|
eqid |
|- ; 1 8 = ; 1 8 |
28 |
|
6cn |
|- 6 e. CC |
29 |
|
ax-1cn |
|- 1 e. CC |
30 |
|
6p1e7 |
|- ( 6 + 1 ) = 7 |
31 |
28 29 30
|
addcomli |
|- ( 1 + 6 ) = 7 |
32 |
26
|
dec0h |
|- 7 = ; 0 7 |
33 |
31 32
|
eqtri |
|- ( 1 + 6 ) = ; 0 7 |
34 |
29
|
mulridi |
|- ( 1 x. 1 ) = 1 |
35 |
29
|
addlidi |
|- ( 0 + 1 ) = 1 |
36 |
34 35
|
oveq12i |
|- ( ( 1 x. 1 ) + ( 0 + 1 ) ) = ( 1 + 1 ) |
37 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
38 |
36 37
|
eqtri |
|- ( ( 1 x. 1 ) + ( 0 + 1 ) ) = 2 |
39 |
|
8cn |
|- 8 e. CC |
40 |
39
|
mulridi |
|- ( 8 x. 1 ) = 8 |
41 |
40
|
oveq1i |
|- ( ( 8 x. 1 ) + 7 ) = ( 8 + 7 ) |
42 |
|
8p7e15 |
|- ( 8 + 7 ) = ; 1 5 |
43 |
41 42
|
eqtri |
|- ( ( 8 x. 1 ) + 7 ) = ; 1 5 |
44 |
3 16 9 26 27 33 3 7 3 38 43
|
decmac |
|- ( ( ; 1 8 x. 1 ) + ( 1 + 6 ) ) = ; 2 5 |
45 |
22
|
dec0h |
|- 6 = ; 0 6 |
46 |
|
3cn |
|- 3 e. CC |
47 |
46
|
mullidi |
|- ( 1 x. 3 ) = 3 |
48 |
46
|
addlidi |
|- ( 0 + 3 ) = 3 |
49 |
47 48
|
oveq12i |
|- ( ( 1 x. 3 ) + ( 0 + 3 ) ) = ( 3 + 3 ) |
50 |
|
3p3e6 |
|- ( 3 + 3 ) = 6 |
51 |
49 50
|
eqtri |
|- ( ( 1 x. 3 ) + ( 0 + 3 ) ) = 6 |
52 |
|
4nn0 |
|- 4 e. NN0 |
53 |
|
8t3e24 |
|- ( 8 x. 3 ) = ; 2 4 |
54 |
|
4cn |
|- 4 e. CC |
55 |
|
6p4e10 |
|- ( 6 + 4 ) = ; 1 0 |
56 |
28 54 55
|
addcomli |
|- ( 4 + 6 ) = ; 1 0 |
57 |
6 52 22 53 11 56
|
decaddci2 |
|- ( ( 8 x. 3 ) + 6 ) = ; 3 0 |
58 |
3 16 9 22 27 45 18 9 18 51 57
|
decmac |
|- ( ( ; 1 8 x. 3 ) + 6 ) = ; 6 0 |
59 |
3 18 3 22 24 25 17 9 22 44 58
|
decma2c |
|- ( ( ; 1 8 x. ; 1 3 ) + ; 1 6 ) = ; ; 2 5 0 |
60 |
|
9cn |
|- 9 e. CC |
61 |
60
|
mullidi |
|- ( 1 x. 9 ) = 9 |
62 |
61
|
oveq1i |
|- ( ( 1 x. 9 ) + 7 ) = ( 9 + 7 ) |
63 |
|
9p7e16 |
|- ( 9 + 7 ) = ; 1 6 |
64 |
62 63
|
eqtri |
|- ( ( 1 x. 9 ) + 7 ) = ; 1 6 |
65 |
|
9t8e72 |
|- ( 9 x. 8 ) = ; 7 2 |
66 |
60 39 65
|
mulcomli |
|- ( 8 x. 9 ) = ; 7 2 |
67 |
20 3 16 27 6 26 64 66
|
decmul1c |
|- ( ; 1 8 x. 9 ) = ; ; 1 6 2 |
68 |
17 19 20 21 6 23 59 67
|
decmul2c |
|- ( ; 1 8 x. ; ; 1 3 9 ) = ; ; ; 2 5 0 2 |
69 |
10 6
|
deccl |
|- ; ; ; 2 5 0 2 e. NN0 |
70 |
69
|
nn0cni |
|- ; ; ; 2 5 0 2 e. CC |
71 |
70 29
|
pncan3oi |
|- ( ( ; ; ; 2 5 0 2 + 1 ) - 1 ) = ; ; ; 2 5 0 2 |
72 |
68 71
|
eqtr4i |
|- ( ; 1 8 x. ; ; 1 3 9 ) = ( ( ; ; ; 2 5 0 2 + 1 ) - 1 ) |
73 |
15 72
|
eqtr4i |
|- ( N - 1 ) = ( ; 1 8 x. ; ; 1 3 9 ) |
74 |
10 18
|
deccl |
|- ; ; ; 2 5 0 3 e. NN0 |
75 |
1 74
|
eqeltri |
|- N e. NN0 |
76 |
75
|
nn0cni |
|- N e. CC |
77 |
|
npcan |
|- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
78 |
76 29 77
|
mp2an |
|- ( ( N - 1 ) + 1 ) = N |
79 |
78
|
eqcomi |
|- N = ( ( N - 1 ) + 1 ) |
80 |
|
1nn |
|- 1 e. NN |
81 |
|
2nn |
|- 2 e. NN |
82 |
19 20
|
deccl |
|- ; ; 1 3 9 e. NN0 |
83 |
82
|
numexp1 |
|- ( ; ; 1 3 9 ^ 1 ) = ; ; 1 3 9 |
84 |
83
|
oveq2i |
|- ( ; 1 8 x. ( ; ; 1 3 9 ^ 1 ) ) = ( ; 1 8 x. ; ; 1 3 9 ) |
85 |
73 84
|
eqtr4i |
|- ( N - 1 ) = ( ; 1 8 x. ( ; ; 1 3 9 ^ 1 ) ) |
86 |
|
8lt10 |
|- 8 < ; 1 0 |
87 |
|
1lt10 |
|- 1 < ; 1 0 |
88 |
80 18 3 87
|
declti |
|- 1 < ; 1 3 |
89 |
3 19 16 20 86 88
|
decltc |
|- ; 1 8 < ; ; 1 3 9 |
90 |
89 83
|
breqtrri |
|- ; 1 8 < ( ; ; 1 3 9 ^ 1 ) |
91 |
1
|
2503lem2 |
|- ( ( 2 ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) |
92 |
1
|
2503lem3 |
|- ( ( ( 2 ^ ; 1 8 ) - 1 ) gcd N ) = 1 |
93 |
2 5 73 79 5 80 81 85 90 91 92
|
pockthi |
|- N e. Prime |