Description: 2503 is a prime number. (Contributed by Mario Carneiro, 3-Mar-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | 2503prm.1 | |- N = ; ; ; 2 5 0 3 |
|
| Assertion | 2503prm | |- N e. Prime |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2503prm.1 | |- N = ; ; ; 2 5 0 3 |
|
| 2 | 139prm | |- ; ; 1 3 9 e. Prime |
|
| 3 | 1nn0 | |- 1 e. NN0 |
|
| 4 | 8nn | |- 8 e. NN |
|
| 5 | 3 4 | decnncl | |- ; 1 8 e. NN |
| 6 | 2nn0 | |- 2 e. NN0 |
|
| 7 | 5nn0 | |- 5 e. NN0 |
|
| 8 | 6 7 | deccl | |- ; 2 5 e. NN0 |
| 9 | 0nn0 | |- 0 e. NN0 |
|
| 10 | 8 9 | deccl | |- ; ; 2 5 0 e. NN0 |
| 11 | 2p1e3 | |- ( 2 + 1 ) = 3 |
|
| 12 | eqid | |- ; ; ; 2 5 0 2 = ; ; ; 2 5 0 2 |
|
| 13 | 10 6 11 12 | decsuc | |- ( ; ; ; 2 5 0 2 + 1 ) = ; ; ; 2 5 0 3 |
| 14 | 1 13 | eqtr4i | |- N = ( ; ; ; 2 5 0 2 + 1 ) |
| 15 | 14 | oveq1i | |- ( N - 1 ) = ( ( ; ; ; 2 5 0 2 + 1 ) - 1 ) |
| 16 | 8nn0 | |- 8 e. NN0 |
|
| 17 | 3 16 | deccl | |- ; 1 8 e. NN0 |
| 18 | 3nn0 | |- 3 e. NN0 |
|
| 19 | 3 18 | deccl | |- ; 1 3 e. NN0 |
| 20 | 9nn0 | |- 9 e. NN0 |
|
| 21 | eqid | |- ; ; 1 3 9 = ; ; 1 3 9 |
|
| 22 | 6nn0 | |- 6 e. NN0 |
|
| 23 | 3 22 | deccl | |- ; 1 6 e. NN0 |
| 24 | eqid | |- ; 1 3 = ; 1 3 |
|
| 25 | eqid | |- ; 1 6 = ; 1 6 |
|
| 26 | 7nn0 | |- 7 e. NN0 |
|
| 27 | eqid | |- ; 1 8 = ; 1 8 |
|
| 28 | 6cn | |- 6 e. CC |
|
| 29 | ax-1cn | |- 1 e. CC |
|
| 30 | 6p1e7 | |- ( 6 + 1 ) = 7 |
|
| 31 | 28 29 30 | addcomli | |- ( 1 + 6 ) = 7 |
| 32 | 26 | dec0h | |- 7 = ; 0 7 |
| 33 | 31 32 | eqtri | |- ( 1 + 6 ) = ; 0 7 |
| 34 | 29 | mulridi | |- ( 1 x. 1 ) = 1 |
| 35 | 29 | addlidi | |- ( 0 + 1 ) = 1 |
| 36 | 34 35 | oveq12i | |- ( ( 1 x. 1 ) + ( 0 + 1 ) ) = ( 1 + 1 ) |
| 37 | 1p1e2 | |- ( 1 + 1 ) = 2 |
|
| 38 | 36 37 | eqtri | |- ( ( 1 x. 1 ) + ( 0 + 1 ) ) = 2 |
| 39 | 8cn | |- 8 e. CC |
|
| 40 | 39 | mulridi | |- ( 8 x. 1 ) = 8 |
| 41 | 40 | oveq1i | |- ( ( 8 x. 1 ) + 7 ) = ( 8 + 7 ) |
| 42 | 8p7e15 | |- ( 8 + 7 ) = ; 1 5 |
|
| 43 | 41 42 | eqtri | |- ( ( 8 x. 1 ) + 7 ) = ; 1 5 |
| 44 | 3 16 9 26 27 33 3 7 3 38 43 | decmac | |- ( ( ; 1 8 x. 1 ) + ( 1 + 6 ) ) = ; 2 5 |
| 45 | 22 | dec0h | |- 6 = ; 0 6 |
| 46 | 3cn | |- 3 e. CC |
|
| 47 | 46 | mullidi | |- ( 1 x. 3 ) = 3 |
| 48 | 46 | addlidi | |- ( 0 + 3 ) = 3 |
| 49 | 47 48 | oveq12i | |- ( ( 1 x. 3 ) + ( 0 + 3 ) ) = ( 3 + 3 ) |
| 50 | 3p3e6 | |- ( 3 + 3 ) = 6 |
|
| 51 | 49 50 | eqtri | |- ( ( 1 x. 3 ) + ( 0 + 3 ) ) = 6 |
| 52 | 4nn0 | |- 4 e. NN0 |
|
| 53 | 8t3e24 | |- ( 8 x. 3 ) = ; 2 4 |
|
| 54 | 4cn | |- 4 e. CC |
|
| 55 | 6p4e10 | |- ( 6 + 4 ) = ; 1 0 |
|
| 56 | 28 54 55 | addcomli | |- ( 4 + 6 ) = ; 1 0 |
| 57 | 6 52 22 53 11 56 | decaddci2 | |- ( ( 8 x. 3 ) + 6 ) = ; 3 0 |
| 58 | 3 16 9 22 27 45 18 9 18 51 57 | decmac | |- ( ( ; 1 8 x. 3 ) + 6 ) = ; 6 0 |
| 59 | 3 18 3 22 24 25 17 9 22 44 58 | decma2c | |- ( ( ; 1 8 x. ; 1 3 ) + ; 1 6 ) = ; ; 2 5 0 |
| 60 | 9cn | |- 9 e. CC |
|
| 61 | 60 | mullidi | |- ( 1 x. 9 ) = 9 |
| 62 | 61 | oveq1i | |- ( ( 1 x. 9 ) + 7 ) = ( 9 + 7 ) |
| 63 | 9p7e16 | |- ( 9 + 7 ) = ; 1 6 |
|
| 64 | 62 63 | eqtri | |- ( ( 1 x. 9 ) + 7 ) = ; 1 6 |
| 65 | 9t8e72 | |- ( 9 x. 8 ) = ; 7 2 |
|
| 66 | 60 39 65 | mulcomli | |- ( 8 x. 9 ) = ; 7 2 |
| 67 | 20 3 16 27 6 26 64 66 | decmul1c | |- ( ; 1 8 x. 9 ) = ; ; 1 6 2 |
| 68 | 17 19 20 21 6 23 59 67 | decmul2c | |- ( ; 1 8 x. ; ; 1 3 9 ) = ; ; ; 2 5 0 2 |
| 69 | 10 6 | deccl | |- ; ; ; 2 5 0 2 e. NN0 |
| 70 | 69 | nn0cni | |- ; ; ; 2 5 0 2 e. CC |
| 71 | 70 29 | pncan3oi | |- ( ( ; ; ; 2 5 0 2 + 1 ) - 1 ) = ; ; ; 2 5 0 2 |
| 72 | 68 71 | eqtr4i | |- ( ; 1 8 x. ; ; 1 3 9 ) = ( ( ; ; ; 2 5 0 2 + 1 ) - 1 ) |
| 73 | 15 72 | eqtr4i | |- ( N - 1 ) = ( ; 1 8 x. ; ; 1 3 9 ) |
| 74 | 10 18 | deccl | |- ; ; ; 2 5 0 3 e. NN0 |
| 75 | 1 74 | eqeltri | |- N e. NN0 |
| 76 | 75 | nn0cni | |- N e. CC |
| 77 | npcan | |- ( ( N e. CC /\ 1 e. CC ) -> ( ( N - 1 ) + 1 ) = N ) |
|
| 78 | 76 29 77 | mp2an | |- ( ( N - 1 ) + 1 ) = N |
| 79 | 78 | eqcomi | |- N = ( ( N - 1 ) + 1 ) |
| 80 | 1nn | |- 1 e. NN |
|
| 81 | 2nn | |- 2 e. NN |
|
| 82 | 19 20 | deccl | |- ; ; 1 3 9 e. NN0 |
| 83 | 82 | numexp1 | |- ( ; ; 1 3 9 ^ 1 ) = ; ; 1 3 9 |
| 84 | 83 | oveq2i | |- ( ; 1 8 x. ( ; ; 1 3 9 ^ 1 ) ) = ( ; 1 8 x. ; ; 1 3 9 ) |
| 85 | 73 84 | eqtr4i | |- ( N - 1 ) = ( ; 1 8 x. ( ; ; 1 3 9 ^ 1 ) ) |
| 86 | 8lt10 | |- 8 < ; 1 0 |
|
| 87 | 1lt10 | |- 1 < ; 1 0 |
|
| 88 | 80 18 3 87 | declti | |- 1 < ; 1 3 |
| 89 | 3 19 16 20 86 88 | decltc | |- ; 1 8 < ; ; 1 3 9 |
| 90 | 89 83 | breqtrri | |- ; 1 8 < ( ; ; 1 3 9 ^ 1 ) |
| 91 | 1 | 2503lem2 | |- ( ( 2 ^ ( N - 1 ) ) mod N ) = ( 1 mod N ) |
| 92 | 1 | 2503lem3 | |- ( ( ( 2 ^ ; 1 8 ) - 1 ) gcd N ) = 1 |
| 93 | 2 5 73 79 5 80 81 85 90 91 92 | pockthi | |- N e. Prime |