Step |
Hyp |
Ref |
Expression |
1 |
|
2itscp.a |
|- ( ph -> A e. RR ) |
2 |
|
2itscp.b |
|- ( ph -> B e. RR ) |
3 |
|
2itscp.x |
|- ( ph -> X e. RR ) |
4 |
|
2itscp.y |
|- ( ph -> Y e. RR ) |
5 |
|
2itscp.d |
|- D = ( X - A ) |
6 |
|
2itscp.e |
|- E = ( B - Y ) |
7 |
2
|
recnd |
|- ( ph -> B e. CC ) |
8 |
4
|
recnd |
|- ( ph -> Y e. CC ) |
9 |
7 8
|
subcld |
|- ( ph -> ( B - Y ) e. CC ) |
10 |
6 9
|
eqeltrid |
|- ( ph -> E e. CC ) |
11 |
10
|
sqcld |
|- ( ph -> ( E ^ 2 ) e. CC ) |
12 |
7
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
13 |
11 12
|
mulcld |
|- ( ph -> ( ( E ^ 2 ) x. ( B ^ 2 ) ) e. CC ) |
14 |
3
|
recnd |
|- ( ph -> X e. CC ) |
15 |
1
|
recnd |
|- ( ph -> A e. CC ) |
16 |
14 15
|
subcld |
|- ( ph -> ( X - A ) e. CC ) |
17 |
5 16
|
eqeltrid |
|- ( ph -> D e. CC ) |
18 |
17
|
sqcld |
|- ( ph -> ( D ^ 2 ) e. CC ) |
19 |
15
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
20 |
18 19
|
mulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( A ^ 2 ) ) e. CC ) |
21 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
22 |
17 15
|
mulcld |
|- ( ph -> ( D x. A ) e. CC ) |
23 |
10 7
|
mulcld |
|- ( ph -> ( E x. B ) e. CC ) |
24 |
22 23
|
mulcld |
|- ( ph -> ( ( D x. A ) x. ( E x. B ) ) e. CC ) |
25 |
21 24
|
mulcld |
|- ( ph -> ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) e. CC ) |
26 |
13 20 25
|
addsubassd |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( B ^ 2 ) ) + ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( E ^ 2 ) x. ( B ^ 2 ) ) + ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) ) |
27 |
20 25
|
subcld |
|- ( ph -> ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) e. CC ) |
28 |
13 27
|
addcomd |
|- ( ph -> ( ( ( E ^ 2 ) x. ( B ^ 2 ) ) + ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) = ( ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( B ^ 2 ) ) ) ) |
29 |
17 15
|
sqmuld |
|- ( ph -> ( ( D x. A ) ^ 2 ) = ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) |
30 |
29
|
eqcomd |
|- ( ph -> ( ( D ^ 2 ) x. ( A ^ 2 ) ) = ( ( D x. A ) ^ 2 ) ) |
31 |
30
|
oveq1d |
|- ( ph -> ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( D x. A ) ^ 2 ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
32 |
10 7
|
sqmuld |
|- ( ph -> ( ( E x. B ) ^ 2 ) = ( ( E ^ 2 ) x. ( B ^ 2 ) ) ) |
33 |
32
|
eqcomd |
|- ( ph -> ( ( E ^ 2 ) x. ( B ^ 2 ) ) = ( ( E x. B ) ^ 2 ) ) |
34 |
31 33
|
oveq12d |
|- ( ph -> ( ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( ( ( D x. A ) ^ 2 ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E x. B ) ^ 2 ) ) ) |
35 |
26 28 34
|
3eqtrd |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( B ^ 2 ) ) + ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( ( D x. A ) ^ 2 ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E x. B ) ^ 2 ) ) ) |
36 |
|
binom2sub |
|- ( ( ( D x. A ) e. CC /\ ( E x. B ) e. CC ) -> ( ( ( D x. A ) - ( E x. B ) ) ^ 2 ) = ( ( ( ( D x. A ) ^ 2 ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E x. B ) ^ 2 ) ) ) |
37 |
22 23 36
|
syl2anc |
|- ( ph -> ( ( ( D x. A ) - ( E x. B ) ) ^ 2 ) = ( ( ( ( D x. A ) ^ 2 ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E x. B ) ^ 2 ) ) ) |
38 |
35 37
|
eqtr4d |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( B ^ 2 ) ) + ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( D x. A ) - ( E x. B ) ) ^ 2 ) ) |