| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2itscp.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | 2itscp.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | 2itscp.x |  |-  ( ph -> X e. RR ) | 
						
							| 4 |  | 2itscp.y |  |-  ( ph -> Y e. RR ) | 
						
							| 5 |  | 2itscp.d |  |-  D = ( X - A ) | 
						
							| 6 |  | 2itscp.e |  |-  E = ( B - Y ) | 
						
							| 7 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 8 | 4 | recnd |  |-  ( ph -> Y e. CC ) | 
						
							| 9 | 7 8 | subcld |  |-  ( ph -> ( B - Y ) e. CC ) | 
						
							| 10 | 6 9 | eqeltrid |  |-  ( ph -> E e. CC ) | 
						
							| 11 | 10 | sqcld |  |-  ( ph -> ( E ^ 2 ) e. CC ) | 
						
							| 12 | 7 | sqcld |  |-  ( ph -> ( B ^ 2 ) e. CC ) | 
						
							| 13 | 11 12 | mulcld |  |-  ( ph -> ( ( E ^ 2 ) x. ( B ^ 2 ) ) e. CC ) | 
						
							| 14 | 3 | recnd |  |-  ( ph -> X e. CC ) | 
						
							| 15 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 16 | 14 15 | subcld |  |-  ( ph -> ( X - A ) e. CC ) | 
						
							| 17 | 5 16 | eqeltrid |  |-  ( ph -> D e. CC ) | 
						
							| 18 | 17 | sqcld |  |-  ( ph -> ( D ^ 2 ) e. CC ) | 
						
							| 19 | 15 | sqcld |  |-  ( ph -> ( A ^ 2 ) e. CC ) | 
						
							| 20 | 18 19 | mulcld |  |-  ( ph -> ( ( D ^ 2 ) x. ( A ^ 2 ) ) e. CC ) | 
						
							| 21 |  | 2cnd |  |-  ( ph -> 2 e. CC ) | 
						
							| 22 | 17 15 | mulcld |  |-  ( ph -> ( D x. A ) e. CC ) | 
						
							| 23 | 10 7 | mulcld |  |-  ( ph -> ( E x. B ) e. CC ) | 
						
							| 24 | 22 23 | mulcld |  |-  ( ph -> ( ( D x. A ) x. ( E x. B ) ) e. CC ) | 
						
							| 25 | 21 24 | mulcld |  |-  ( ph -> ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) e. CC ) | 
						
							| 26 | 13 20 25 | addsubassd |  |-  ( ph -> ( ( ( ( E ^ 2 ) x. ( B ^ 2 ) ) + ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( E ^ 2 ) x. ( B ^ 2 ) ) + ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) ) | 
						
							| 27 | 20 25 | subcld |  |-  ( ph -> ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) e. CC ) | 
						
							| 28 | 13 27 | addcomd |  |-  ( ph -> ( ( ( E ^ 2 ) x. ( B ^ 2 ) ) + ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) = ( ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( B ^ 2 ) ) ) ) | 
						
							| 29 | 17 15 | sqmuld |  |-  ( ph -> ( ( D x. A ) ^ 2 ) = ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 30 | 29 | eqcomd |  |-  ( ph -> ( ( D ^ 2 ) x. ( A ^ 2 ) ) = ( ( D x. A ) ^ 2 ) ) | 
						
							| 31 | 30 | oveq1d |  |-  ( ph -> ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( D x. A ) ^ 2 ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) | 
						
							| 32 | 10 7 | sqmuld |  |-  ( ph -> ( ( E x. B ) ^ 2 ) = ( ( E ^ 2 ) x. ( B ^ 2 ) ) ) | 
						
							| 33 | 32 | eqcomd |  |-  ( ph -> ( ( E ^ 2 ) x. ( B ^ 2 ) ) = ( ( E x. B ) ^ 2 ) ) | 
						
							| 34 | 31 33 | oveq12d |  |-  ( ph -> ( ( ( ( D ^ 2 ) x. ( A ^ 2 ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( ( ( D x. A ) ^ 2 ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E x. B ) ^ 2 ) ) ) | 
						
							| 35 | 26 28 34 | 3eqtrd |  |-  ( ph -> ( ( ( ( E ^ 2 ) x. ( B ^ 2 ) ) + ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( ( D x. A ) ^ 2 ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E x. B ) ^ 2 ) ) ) | 
						
							| 36 |  | binom2sub |  |-  ( ( ( D x. A ) e. CC /\ ( E x. B ) e. CC ) -> ( ( ( D x. A ) - ( E x. B ) ) ^ 2 ) = ( ( ( ( D x. A ) ^ 2 ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E x. B ) ^ 2 ) ) ) | 
						
							| 37 | 22 23 36 | syl2anc |  |-  ( ph -> ( ( ( D x. A ) - ( E x. B ) ) ^ 2 ) = ( ( ( ( D x. A ) ^ 2 ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E x. B ) ^ 2 ) ) ) | 
						
							| 38 | 35 37 | eqtr4d |  |-  ( ph -> ( ( ( ( E ^ 2 ) x. ( B ^ 2 ) ) + ( ( D ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( D x. A ) - ( E x. B ) ) ^ 2 ) ) |