Step |
Hyp |
Ref |
Expression |
1 |
|
2itscp.a |
|- ( ph -> A e. RR ) |
2 |
|
2itscp.b |
|- ( ph -> B e. RR ) |
3 |
|
2itscp.x |
|- ( ph -> X e. RR ) |
4 |
|
2itscp.y |
|- ( ph -> Y e. RR ) |
5 |
|
2itscp.d |
|- D = ( X - A ) |
6 |
|
2itscp.e |
|- E = ( B - Y ) |
7 |
|
2itscp.c |
|- C = ( ( D x. B ) + ( E x. A ) ) |
8 |
7
|
oveq1i |
|- ( C ^ 2 ) = ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) |
9 |
8
|
a1i |
|- ( ph -> ( C ^ 2 ) = ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) ) |
10 |
3
|
recnd |
|- ( ph -> X e. CC ) |
11 |
1
|
recnd |
|- ( ph -> A e. CC ) |
12 |
10 11
|
subcld |
|- ( ph -> ( X - A ) e. CC ) |
13 |
5 12
|
eqeltrid |
|- ( ph -> D e. CC ) |
14 |
2
|
recnd |
|- ( ph -> B e. CC ) |
15 |
13 14
|
mulcld |
|- ( ph -> ( D x. B ) e. CC ) |
16 |
4
|
recnd |
|- ( ph -> Y e. CC ) |
17 |
14 16
|
subcld |
|- ( ph -> ( B - Y ) e. CC ) |
18 |
6 17
|
eqeltrid |
|- ( ph -> E e. CC ) |
19 |
18 11
|
mulcld |
|- ( ph -> ( E x. A ) e. CC ) |
20 |
|
binom2 |
|- ( ( ( D x. B ) e. CC /\ ( E x. A ) e. CC ) -> ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) = ( ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) + ( ( E x. A ) ^ 2 ) ) ) |
21 |
15 19 20
|
syl2anc |
|- ( ph -> ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) = ( ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) + ( ( E x. A ) ^ 2 ) ) ) |
22 |
13 14
|
sqmuld |
|- ( ph -> ( ( D x. B ) ^ 2 ) = ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) |
23 |
|
mul4r |
|- ( ( ( D e. CC /\ B e. CC ) /\ ( E e. CC /\ A e. CC ) ) -> ( ( D x. B ) x. ( E x. A ) ) = ( ( D x. A ) x. ( E x. B ) ) ) |
24 |
13 14 18 11 23
|
syl22anc |
|- ( ph -> ( ( D x. B ) x. ( E x. A ) ) = ( ( D x. A ) x. ( E x. B ) ) ) |
25 |
24
|
oveq2d |
|- ( ph -> ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) = ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) |
26 |
22 25
|
oveq12d |
|- ( ph -> ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) = ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
27 |
18 11
|
sqmuld |
|- ( ph -> ( ( E x. A ) ^ 2 ) = ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) |
28 |
26 27
|
oveq12d |
|- ( ph -> ( ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) + ( ( E x. A ) ^ 2 ) ) = ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |
29 |
9 21 28
|
3eqtrd |
|- ( ph -> ( C ^ 2 ) = ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |