| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 2itscp.a |  |-  ( ph -> A e. RR ) | 
						
							| 2 |  | 2itscp.b |  |-  ( ph -> B e. RR ) | 
						
							| 3 |  | 2itscp.x |  |-  ( ph -> X e. RR ) | 
						
							| 4 |  | 2itscp.y |  |-  ( ph -> Y e. RR ) | 
						
							| 5 |  | 2itscp.d |  |-  D = ( X - A ) | 
						
							| 6 |  | 2itscp.e |  |-  E = ( B - Y ) | 
						
							| 7 |  | 2itscp.c |  |-  C = ( ( D x. B ) + ( E x. A ) ) | 
						
							| 8 | 7 | oveq1i |  |-  ( C ^ 2 ) = ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) | 
						
							| 9 | 8 | a1i |  |-  ( ph -> ( C ^ 2 ) = ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) ) | 
						
							| 10 | 3 | recnd |  |-  ( ph -> X e. CC ) | 
						
							| 11 | 1 | recnd |  |-  ( ph -> A e. CC ) | 
						
							| 12 | 10 11 | subcld |  |-  ( ph -> ( X - A ) e. CC ) | 
						
							| 13 | 5 12 | eqeltrid |  |-  ( ph -> D e. CC ) | 
						
							| 14 | 2 | recnd |  |-  ( ph -> B e. CC ) | 
						
							| 15 | 13 14 | mulcld |  |-  ( ph -> ( D x. B ) e. CC ) | 
						
							| 16 | 4 | recnd |  |-  ( ph -> Y e. CC ) | 
						
							| 17 | 14 16 | subcld |  |-  ( ph -> ( B - Y ) e. CC ) | 
						
							| 18 | 6 17 | eqeltrid |  |-  ( ph -> E e. CC ) | 
						
							| 19 | 18 11 | mulcld |  |-  ( ph -> ( E x. A ) e. CC ) | 
						
							| 20 |  | binom2 |  |-  ( ( ( D x. B ) e. CC /\ ( E x. A ) e. CC ) -> ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) = ( ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) + ( ( E x. A ) ^ 2 ) ) ) | 
						
							| 21 | 15 19 20 | syl2anc |  |-  ( ph -> ( ( ( D x. B ) + ( E x. A ) ) ^ 2 ) = ( ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) + ( ( E x. A ) ^ 2 ) ) ) | 
						
							| 22 | 13 14 | sqmuld |  |-  ( ph -> ( ( D x. B ) ^ 2 ) = ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) | 
						
							| 23 |  | mul4r |  |-  ( ( ( D e. CC /\ B e. CC ) /\ ( E e. CC /\ A e. CC ) ) -> ( ( D x. B ) x. ( E x. A ) ) = ( ( D x. A ) x. ( E x. B ) ) ) | 
						
							| 24 | 13 14 18 11 23 | syl22anc |  |-  ( ph -> ( ( D x. B ) x. ( E x. A ) ) = ( ( D x. A ) x. ( E x. B ) ) ) | 
						
							| 25 | 24 | oveq2d |  |-  ( ph -> ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) = ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) | 
						
							| 26 | 22 25 | oveq12d |  |-  ( ph -> ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) = ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) | 
						
							| 27 | 18 11 | sqmuld |  |-  ( ph -> ( ( E x. A ) ^ 2 ) = ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) | 
						
							| 28 | 26 27 | oveq12d |  |-  ( ph -> ( ( ( ( D x. B ) ^ 2 ) + ( 2 x. ( ( D x. B ) x. ( E x. A ) ) ) ) + ( ( E x. A ) ^ 2 ) ) = ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) | 
						
							| 29 | 9 21 28 | 3eqtrd |  |-  ( ph -> ( C ^ 2 ) = ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |