| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2itscp.a |
|- ( ph -> A e. RR ) |
| 2 |
|
2itscp.b |
|- ( ph -> B e. RR ) |
| 3 |
|
2itscp.x |
|- ( ph -> X e. RR ) |
| 4 |
|
2itscp.y |
|- ( ph -> Y e. RR ) |
| 5 |
|
2itscp.d |
|- D = ( X - A ) |
| 6 |
|
2itscp.e |
|- E = ( B - Y ) |
| 7 |
|
2itscp.c |
|- C = ( ( D x. B ) + ( E x. A ) ) |
| 8 |
|
2itscp.r |
|- ( ph -> R e. RR ) |
| 9 |
|
2itscplem3.q |
|- Q = ( ( E ^ 2 ) + ( D ^ 2 ) ) |
| 10 |
|
2itscplem3.s |
|- S = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) |
| 11 |
10
|
a1i |
|- ( ph -> S = ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) ) |
| 12 |
9
|
a1i |
|- ( ph -> Q = ( ( E ^ 2 ) + ( D ^ 2 ) ) ) |
| 13 |
12
|
oveq2d |
|- ( ph -> ( ( R ^ 2 ) x. Q ) = ( ( R ^ 2 ) x. ( ( E ^ 2 ) + ( D ^ 2 ) ) ) ) |
| 14 |
8
|
recnd |
|- ( ph -> R e. CC ) |
| 15 |
14
|
sqcld |
|- ( ph -> ( R ^ 2 ) e. CC ) |
| 16 |
2
|
recnd |
|- ( ph -> B e. CC ) |
| 17 |
4
|
recnd |
|- ( ph -> Y e. CC ) |
| 18 |
16 17
|
subcld |
|- ( ph -> ( B - Y ) e. CC ) |
| 19 |
6 18
|
eqeltrid |
|- ( ph -> E e. CC ) |
| 20 |
19
|
sqcld |
|- ( ph -> ( E ^ 2 ) e. CC ) |
| 21 |
3
|
recnd |
|- ( ph -> X e. CC ) |
| 22 |
1
|
recnd |
|- ( ph -> A e. CC ) |
| 23 |
21 22
|
subcld |
|- ( ph -> ( X - A ) e. CC ) |
| 24 |
5 23
|
eqeltrid |
|- ( ph -> D e. CC ) |
| 25 |
24
|
sqcld |
|- ( ph -> ( D ^ 2 ) e. CC ) |
| 26 |
20 25
|
addcld |
|- ( ph -> ( ( E ^ 2 ) + ( D ^ 2 ) ) e. CC ) |
| 27 |
15 26
|
mulcomd |
|- ( ph -> ( ( R ^ 2 ) x. ( ( E ^ 2 ) + ( D ^ 2 ) ) ) = ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( R ^ 2 ) ) ) |
| 28 |
20 25 15
|
adddird |
|- ( ph -> ( ( ( E ^ 2 ) + ( D ^ 2 ) ) x. ( R ^ 2 ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) |
| 29 |
13 27 28
|
3eqtrd |
|- ( ph -> ( ( R ^ 2 ) x. Q ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) ) |
| 30 |
1 2 3 4 5 6 7
|
2itscplem2 |
|- ( ph -> ( C ^ 2 ) = ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |
| 31 |
29 30
|
oveq12d |
|- ( ph -> ( ( ( R ^ 2 ) x. Q ) - ( C ^ 2 ) ) = ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) ) |
| 32 |
20 15
|
mulcld |
|- ( ph -> ( ( E ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
| 33 |
25 15
|
mulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( R ^ 2 ) ) e. CC ) |
| 34 |
32 33
|
addcld |
|- ( ph -> ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) e. CC ) |
| 35 |
16
|
sqcld |
|- ( ph -> ( B ^ 2 ) e. CC ) |
| 36 |
25 35
|
mulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( B ^ 2 ) ) e. CC ) |
| 37 |
|
2cnd |
|- ( ph -> 2 e. CC ) |
| 38 |
24 22
|
mulcld |
|- ( ph -> ( D x. A ) e. CC ) |
| 39 |
19 16
|
mulcld |
|- ( ph -> ( E x. B ) e. CC ) |
| 40 |
38 39
|
mulcld |
|- ( ph -> ( ( D x. A ) x. ( E x. B ) ) e. CC ) |
| 41 |
37 40
|
mulcld |
|- ( ph -> ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) e. CC ) |
| 42 |
34 36 41
|
subsub4d |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) ) |
| 43 |
42
|
eqcomd |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) = ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
| 44 |
43
|
oveq1d |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |
| 45 |
34 36
|
subcld |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) e. CC ) |
| 46 |
22
|
sqcld |
|- ( ph -> ( A ^ 2 ) e. CC ) |
| 47 |
20 46
|
mulcld |
|- ( ph -> ( ( E ^ 2 ) x. ( A ^ 2 ) ) e. CC ) |
| 48 |
45 41 47
|
sub32d |
|- ( ph -> ( ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
| 49 |
44 48
|
eqtrd |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
| 50 |
36 41
|
addcld |
|- ( ph -> ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) e. CC ) |
| 51 |
34 50 47
|
subsub4d |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) ) |
| 52 |
32 33 36
|
addsubassd |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( ( D ^ 2 ) x. ( R ^ 2 ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) ) ) |
| 53 |
25 15 35
|
subdid |
|- ( ph -> ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) = ( ( ( D ^ 2 ) x. ( R ^ 2 ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) ) |
| 54 |
53
|
eqcomd |
|- ( ph -> ( ( ( D ^ 2 ) x. ( R ^ 2 ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) |
| 55 |
54
|
oveq2d |
|- ( ph -> ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( ( D ^ 2 ) x. ( R ^ 2 ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
| 56 |
52 55
|
eqtrd |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
| 57 |
56
|
oveq1d |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |
| 58 |
15 35
|
subcld |
|- ( ph -> ( ( R ^ 2 ) - ( B ^ 2 ) ) e. CC ) |
| 59 |
25 58
|
mulcld |
|- ( ph -> ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) e. CC ) |
| 60 |
32 59 47
|
addsubd |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
| 61 |
20 15 46
|
subdid |
|- ( ph -> ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) = ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) |
| 62 |
61
|
eqcomd |
|- ( ph -> ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) ) |
| 63 |
62
|
oveq1d |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) = ( ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
| 64 |
57 60 63
|
3eqtrd |
|- ( ph -> ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) = ( ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) ) |
| 65 |
64
|
oveq1d |
|- ( ph -> ( ( ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( D ^ 2 ) x. ( B ^ 2 ) ) ) - ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) = ( ( ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
| 66 |
49 51 65
|
3eqtr3d |
|- ( ph -> ( ( ( ( E ^ 2 ) x. ( R ^ 2 ) ) + ( ( D ^ 2 ) x. ( R ^ 2 ) ) ) - ( ( ( ( D ^ 2 ) x. ( B ^ 2 ) ) + ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) + ( ( E ^ 2 ) x. ( A ^ 2 ) ) ) ) = ( ( ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |
| 67 |
11 31 66
|
3eqtrd |
|- ( ph -> S = ( ( ( ( E ^ 2 ) x. ( ( R ^ 2 ) - ( A ^ 2 ) ) ) + ( ( D ^ 2 ) x. ( ( R ^ 2 ) - ( B ^ 2 ) ) ) ) - ( 2 x. ( ( D x. A ) x. ( E x. B ) ) ) ) ) |