Step |
Hyp |
Ref |
Expression |
1 |
|
2itscp.a |
|
2 |
|
2itscp.b |
|
3 |
|
2itscp.x |
|
4 |
|
2itscp.y |
|
5 |
|
2itscp.d |
|
6 |
|
2itscp.e |
|
7 |
|
2itscp.c |
|
8 |
|
2itscp.r |
|
9 |
|
2itscplem3.q |
|
10 |
|
2itscplem3.s |
|
11 |
10
|
a1i |
|
12 |
9
|
a1i |
|
13 |
12
|
oveq2d |
|
14 |
8
|
recnd |
|
15 |
14
|
sqcld |
|
16 |
2
|
recnd |
|
17 |
4
|
recnd |
|
18 |
16 17
|
subcld |
|
19 |
6 18
|
eqeltrid |
|
20 |
19
|
sqcld |
|
21 |
3
|
recnd |
|
22 |
1
|
recnd |
|
23 |
21 22
|
subcld |
|
24 |
5 23
|
eqeltrid |
|
25 |
24
|
sqcld |
|
26 |
20 25
|
addcld |
|
27 |
15 26
|
mulcomd |
|
28 |
20 25 15
|
adddird |
|
29 |
13 27 28
|
3eqtrd |
|
30 |
1 2 3 4 5 6 7
|
2itscplem2 |
|
31 |
29 30
|
oveq12d |
|
32 |
20 15
|
mulcld |
|
33 |
25 15
|
mulcld |
|
34 |
32 33
|
addcld |
|
35 |
16
|
sqcld |
|
36 |
25 35
|
mulcld |
|
37 |
|
2cnd |
|
38 |
24 22
|
mulcld |
|
39 |
19 16
|
mulcld |
|
40 |
38 39
|
mulcld |
|
41 |
37 40
|
mulcld |
|
42 |
34 36 41
|
subsub4d |
|
43 |
42
|
eqcomd |
|
44 |
43
|
oveq1d |
|
45 |
34 36
|
subcld |
|
46 |
22
|
sqcld |
|
47 |
20 46
|
mulcld |
|
48 |
45 41 47
|
sub32d |
|
49 |
44 48
|
eqtrd |
|
50 |
36 41
|
addcld |
|
51 |
34 50 47
|
subsub4d |
|
52 |
32 33 36
|
addsubassd |
|
53 |
25 15 35
|
subdid |
|
54 |
53
|
eqcomd |
|
55 |
54
|
oveq2d |
|
56 |
52 55
|
eqtrd |
|
57 |
56
|
oveq1d |
|
58 |
15 35
|
subcld |
|
59 |
25 58
|
mulcld |
|
60 |
32 59 47
|
addsubd |
|
61 |
20 15 46
|
subdid |
|
62 |
61
|
eqcomd |
|
63 |
62
|
oveq1d |
|
64 |
57 60 63
|
3eqtrd |
|
65 |
64
|
oveq1d |
|
66 |
49 51 65
|
3eqtr3d |
|
67 |
11 31 66
|
3eqtrd |
|