Description: Lemma 1 for 2itscp . (Contributed by AV, 4-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 2itscp.a | |
|
2itscp.b | |
||
2itscp.x | |
||
2itscp.y | |
||
2itscp.d | |
||
2itscp.e | |
||
Assertion | 2itscplem1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2itscp.a | |
|
2 | 2itscp.b | |
|
3 | 2itscp.x | |
|
4 | 2itscp.y | |
|
5 | 2itscp.d | |
|
6 | 2itscp.e | |
|
7 | 2 | recnd | |
8 | 4 | recnd | |
9 | 7 8 | subcld | |
10 | 6 9 | eqeltrid | |
11 | 10 | sqcld | |
12 | 7 | sqcld | |
13 | 11 12 | mulcld | |
14 | 3 | recnd | |
15 | 1 | recnd | |
16 | 14 15 | subcld | |
17 | 5 16 | eqeltrid | |
18 | 17 | sqcld | |
19 | 15 | sqcld | |
20 | 18 19 | mulcld | |
21 | 2cnd | |
|
22 | 17 15 | mulcld | |
23 | 10 7 | mulcld | |
24 | 22 23 | mulcld | |
25 | 21 24 | mulcld | |
26 | 13 20 25 | addsubassd | |
27 | 20 25 | subcld | |
28 | 13 27 | addcomd | |
29 | 17 15 | sqmuld | |
30 | 29 | eqcomd | |
31 | 30 | oveq1d | |
32 | 10 7 | sqmuld | |
33 | 32 | eqcomd | |
34 | 31 33 | oveq12d | |
35 | 26 28 34 | 3eqtrd | |
36 | binom2sub | |
|
37 | 22 23 36 | syl2anc | |
38 | 35 37 | eqtr4d | |