| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2itscp.a |
|
| 2 |
|
2itscp.b |
|
| 3 |
|
2itscp.x |
|
| 4 |
|
2itscp.y |
|
| 5 |
|
2itscp.d |
|
| 6 |
|
2itscp.e |
|
| 7 |
2
|
recnd |
|
| 8 |
4
|
recnd |
|
| 9 |
7 8
|
subcld |
|
| 10 |
6 9
|
eqeltrid |
|
| 11 |
10
|
sqcld |
|
| 12 |
7
|
sqcld |
|
| 13 |
11 12
|
mulcld |
|
| 14 |
3
|
recnd |
|
| 15 |
1
|
recnd |
|
| 16 |
14 15
|
subcld |
|
| 17 |
5 16
|
eqeltrid |
|
| 18 |
17
|
sqcld |
|
| 19 |
15
|
sqcld |
|
| 20 |
18 19
|
mulcld |
|
| 21 |
|
2cnd |
|
| 22 |
17 15
|
mulcld |
|
| 23 |
10 7
|
mulcld |
|
| 24 |
22 23
|
mulcld |
|
| 25 |
21 24
|
mulcld |
|
| 26 |
13 20 25
|
addsubassd |
|
| 27 |
20 25
|
subcld |
|
| 28 |
13 27
|
addcomd |
|
| 29 |
17 15
|
sqmuld |
|
| 30 |
29
|
eqcomd |
|
| 31 |
30
|
oveq1d |
|
| 32 |
10 7
|
sqmuld |
|
| 33 |
32
|
eqcomd |
|
| 34 |
31 33
|
oveq12d |
|
| 35 |
26 28 34
|
3eqtrd |
|
| 36 |
|
binom2sub |
|
| 37 |
22 23 36
|
syl2anc |
|
| 38 |
35 37
|
eqtr4d |
|