| Step | Hyp | Ref | Expression | 
						
							| 1 |  | zre |  |-  ( N e. ZZ -> N e. RR ) | 
						
							| 2 | 1 | rehalfcld |  |-  ( N e. ZZ -> ( N / 2 ) e. RR ) | 
						
							| 3 | 2 | adantr |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( N / 2 ) e. RR ) | 
						
							| 4 |  | id |  |-  ( I e. ZZ -> I e. ZZ ) | 
						
							| 5 |  | 2z |  |-  2 e. ZZ | 
						
							| 6 | 5 | a1i |  |-  ( I e. ZZ -> 2 e. ZZ ) | 
						
							| 7 | 4 6 | zmulcld |  |-  ( I e. ZZ -> ( I x. 2 ) e. ZZ ) | 
						
							| 8 | 7 | zred |  |-  ( I e. ZZ -> ( I x. 2 ) e. RR ) | 
						
							| 9 | 8 | adantl |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( I x. 2 ) e. RR ) | 
						
							| 10 |  | 2re |  |-  2 e. RR | 
						
							| 11 |  | 2pos |  |-  0 < 2 | 
						
							| 12 | 10 11 | pm3.2i |  |-  ( 2 e. RR /\ 0 < 2 ) | 
						
							| 13 | 12 | a1i |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( 2 e. RR /\ 0 < 2 ) ) | 
						
							| 14 |  | ltdiv1 |  |-  ( ( ( N / 2 ) e. RR /\ ( I x. 2 ) e. RR /\ ( 2 e. RR /\ 0 < 2 ) ) -> ( ( N / 2 ) < ( I x. 2 ) <-> ( ( N / 2 ) / 2 ) < ( ( I x. 2 ) / 2 ) ) ) | 
						
							| 15 | 3 9 13 14 | syl3anc |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 2 ) < ( I x. 2 ) <-> ( ( N / 2 ) / 2 ) < ( ( I x. 2 ) / 2 ) ) ) | 
						
							| 16 |  | zcn |  |-  ( N e. ZZ -> N e. CC ) | 
						
							| 17 | 16 | adantr |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> N e. CC ) | 
						
							| 18 |  | 2cnne0 |  |-  ( 2 e. CC /\ 2 =/= 0 ) | 
						
							| 19 | 18 | a1i |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( 2 e. CC /\ 2 =/= 0 ) ) | 
						
							| 20 |  | divdiv1 |  |-  ( ( N e. CC /\ ( 2 e. CC /\ 2 =/= 0 ) /\ ( 2 e. CC /\ 2 =/= 0 ) ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) | 
						
							| 21 | 17 19 19 20 | syl3anc |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 2 ) / 2 ) = ( N / ( 2 x. 2 ) ) ) | 
						
							| 22 |  | 2t2e4 |  |-  ( 2 x. 2 ) = 4 | 
						
							| 23 | 22 | oveq2i |  |-  ( N / ( 2 x. 2 ) ) = ( N / 4 ) | 
						
							| 24 | 21 23 | eqtrdi |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 2 ) / 2 ) = ( N / 4 ) ) | 
						
							| 25 |  | zcn |  |-  ( I e. ZZ -> I e. CC ) | 
						
							| 26 | 25 | adantl |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> I e. CC ) | 
						
							| 27 |  | 2cnd |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> 2 e. CC ) | 
						
							| 28 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 29 | 28 | a1i |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> 2 =/= 0 ) | 
						
							| 30 | 26 27 29 | divcan4d |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( ( I x. 2 ) / 2 ) = I ) | 
						
							| 31 | 24 30 | breq12d |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( ( ( N / 2 ) / 2 ) < ( ( I x. 2 ) / 2 ) <-> ( N / 4 ) < I ) ) | 
						
							| 32 |  | 4re |  |-  4 e. RR | 
						
							| 33 | 32 | a1i |  |-  ( N e. ZZ -> 4 e. RR ) | 
						
							| 34 |  | 4ne0 |  |-  4 =/= 0 | 
						
							| 35 | 34 | a1i |  |-  ( N e. ZZ -> 4 =/= 0 ) | 
						
							| 36 | 1 33 35 | redivcld |  |-  ( N e. ZZ -> ( N / 4 ) e. RR ) | 
						
							| 37 |  | fllt |  |-  ( ( ( N / 4 ) e. RR /\ I e. ZZ ) -> ( ( N / 4 ) < I <-> ( |_ ` ( N / 4 ) ) < I ) ) | 
						
							| 38 | 36 37 | sylan |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( ( N / 4 ) < I <-> ( |_ ` ( N / 4 ) ) < I ) ) | 
						
							| 39 | 15 31 38 | 3bitrrd |  |-  ( ( N e. ZZ /\ I e. ZZ ) -> ( ( |_ ` ( N / 4 ) ) < I <-> ( N / 2 ) < ( I x. 2 ) ) ) |