| Step |
Hyp |
Ref |
Expression |
| 1 |
|
2lgslem2.n |
|- N = ( ( ( P - 1 ) / 2 ) - ( |_ ` ( P / 4 ) ) ) |
| 2 |
|
nnnn0 |
|- ( P e. NN -> P e. NN0 ) |
| 3 |
|
8nn |
|- 8 e. NN |
| 4 |
|
nnrp |
|- ( 8 e. NN -> 8 e. RR+ ) |
| 5 |
3 4
|
ax-mp |
|- 8 e. RR+ |
| 6 |
|
modmuladdnn0 |
|- ( ( P e. NN0 /\ 8 e. RR+ ) -> ( ( P mod 8 ) = 5 -> E. k e. NN0 P = ( ( k x. 8 ) + 5 ) ) ) |
| 7 |
2 5 6
|
sylancl |
|- ( P e. NN -> ( ( P mod 8 ) = 5 -> E. k e. NN0 P = ( ( k x. 8 ) + 5 ) ) ) |
| 8 |
|
simpr |
|- ( ( P e. NN /\ k e. NN0 ) -> k e. NN0 ) |
| 9 |
|
nn0cn |
|- ( k e. NN0 -> k e. CC ) |
| 10 |
|
8cn |
|- 8 e. CC |
| 11 |
10
|
a1i |
|- ( k e. NN0 -> 8 e. CC ) |
| 12 |
9 11
|
mulcomd |
|- ( k e. NN0 -> ( k x. 8 ) = ( 8 x. k ) ) |
| 13 |
12
|
adantl |
|- ( ( P e. NN /\ k e. NN0 ) -> ( k x. 8 ) = ( 8 x. k ) ) |
| 14 |
13
|
oveq1d |
|- ( ( P e. NN /\ k e. NN0 ) -> ( ( k x. 8 ) + 5 ) = ( ( 8 x. k ) + 5 ) ) |
| 15 |
14
|
eqeq2d |
|- ( ( P e. NN /\ k e. NN0 ) -> ( P = ( ( k x. 8 ) + 5 ) <-> P = ( ( 8 x. k ) + 5 ) ) ) |
| 16 |
15
|
biimpa |
|- ( ( ( P e. NN /\ k e. NN0 ) /\ P = ( ( k x. 8 ) + 5 ) ) -> P = ( ( 8 x. k ) + 5 ) ) |
| 17 |
1
|
2lgslem3c |
|- ( ( k e. NN0 /\ P = ( ( 8 x. k ) + 5 ) ) -> N = ( ( 2 x. k ) + 1 ) ) |
| 18 |
8 16 17
|
syl2an2r |
|- ( ( ( P e. NN /\ k e. NN0 ) /\ P = ( ( k x. 8 ) + 5 ) ) -> N = ( ( 2 x. k ) + 1 ) ) |
| 19 |
|
oveq1 |
|- ( N = ( ( 2 x. k ) + 1 ) -> ( N mod 2 ) = ( ( ( 2 x. k ) + 1 ) mod 2 ) ) |
| 20 |
|
nn0z |
|- ( k e. NN0 -> k e. ZZ ) |
| 21 |
|
eqidd |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) = ( ( 2 x. k ) + 1 ) ) |
| 22 |
|
2tp1odd |
|- ( ( k e. ZZ /\ ( ( 2 x. k ) + 1 ) = ( ( 2 x. k ) + 1 ) ) -> -. 2 || ( ( 2 x. k ) + 1 ) ) |
| 23 |
20 21 22
|
syl2anc |
|- ( k e. NN0 -> -. 2 || ( ( 2 x. k ) + 1 ) ) |
| 24 |
|
2z |
|- 2 e. ZZ |
| 25 |
24
|
a1i |
|- ( k e. NN0 -> 2 e. ZZ ) |
| 26 |
25 20
|
zmulcld |
|- ( k e. NN0 -> ( 2 x. k ) e. ZZ ) |
| 27 |
26
|
peano2zd |
|- ( k e. NN0 -> ( ( 2 x. k ) + 1 ) e. ZZ ) |
| 28 |
|
mod2eq1n2dvds |
|- ( ( ( 2 x. k ) + 1 ) e. ZZ -> ( ( ( ( 2 x. k ) + 1 ) mod 2 ) = 1 <-> -. 2 || ( ( 2 x. k ) + 1 ) ) ) |
| 29 |
27 28
|
syl |
|- ( k e. NN0 -> ( ( ( ( 2 x. k ) + 1 ) mod 2 ) = 1 <-> -. 2 || ( ( 2 x. k ) + 1 ) ) ) |
| 30 |
23 29
|
mpbird |
|- ( k e. NN0 -> ( ( ( 2 x. k ) + 1 ) mod 2 ) = 1 ) |
| 31 |
19 30
|
sylan9eqr |
|- ( ( k e. NN0 /\ N = ( ( 2 x. k ) + 1 ) ) -> ( N mod 2 ) = 1 ) |
| 32 |
8 18 31
|
syl2an2r |
|- ( ( ( P e. NN /\ k e. NN0 ) /\ P = ( ( k x. 8 ) + 5 ) ) -> ( N mod 2 ) = 1 ) |
| 33 |
32
|
rexlimdva2 |
|- ( P e. NN -> ( E. k e. NN0 P = ( ( k x. 8 ) + 5 ) -> ( N mod 2 ) = 1 ) ) |
| 34 |
7 33
|
syld |
|- ( P e. NN -> ( ( P mod 8 ) = 5 -> ( N mod 2 ) = 1 ) ) |
| 35 |
34
|
imp |
|- ( ( P e. NN /\ ( P mod 8 ) = 5 ) -> ( N mod 2 ) = 1 ) |