| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  |-  ( N = ( ( 8 x. A ) + B ) -> ( N ^ 2 ) = ( ( ( 8 x. A ) + B ) ^ 2 ) ) | 
						
							| 2 | 1 | 3ad2ant3 |  |-  ( ( A e. ZZ /\ B e. ZZ /\ N = ( ( 8 x. A ) + B ) ) -> ( N ^ 2 ) = ( ( ( 8 x. A ) + B ) ^ 2 ) ) | 
						
							| 3 | 2 | oveq1d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ N = ( ( 8 x. A ) + B ) ) -> ( ( N ^ 2 ) - 1 ) = ( ( ( ( 8 x. A ) + B ) ^ 2 ) - 1 ) ) | 
						
							| 4 | 3 | oveq1d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ N = ( ( 8 x. A ) + B ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( ( ( ( 8 x. A ) + B ) ^ 2 ) - 1 ) / 8 ) ) | 
						
							| 5 |  | zcn |  |-  ( A e. ZZ -> A e. CC ) | 
						
							| 6 | 5 | adantr |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> A e. CC ) | 
						
							| 7 |  | zcn |  |-  ( B e. ZZ -> B e. CC ) | 
						
							| 8 | 7 | adantl |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> B e. CC ) | 
						
							| 9 |  | 1cnd |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> 1 e. CC ) | 
						
							| 10 |  | 8cn |  |-  8 e. CC | 
						
							| 11 |  | 8re |  |-  8 e. RR | 
						
							| 12 |  | 8pos |  |-  0 < 8 | 
						
							| 13 | 11 12 | gt0ne0ii |  |-  8 =/= 0 | 
						
							| 14 | 10 13 | pm3.2i |  |-  ( 8 e. CC /\ 8 =/= 0 ) | 
						
							| 15 | 14 | a1i |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( 8 e. CC /\ 8 =/= 0 ) ) | 
						
							| 16 |  | mulsubdivbinom2 |  |-  ( ( ( A e. CC /\ B e. CC /\ 1 e. CC ) /\ ( 8 e. CC /\ 8 =/= 0 ) ) -> ( ( ( ( ( 8 x. A ) + B ) ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 17 | 6 8 9 15 16 | syl31anc |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( ( ( ( ( 8 x. A ) + B ) ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 18 | 17 | 3adant3 |  |-  ( ( A e. ZZ /\ B e. ZZ /\ N = ( ( 8 x. A ) + B ) ) -> ( ( ( ( ( 8 x. A ) + B ) ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 1 ) / 8 ) ) ) | 
						
							| 19 | 4 18 | eqtrd |  |-  ( ( A e. ZZ /\ B e. ZZ /\ N = ( ( 8 x. A ) + B ) ) -> ( ( ( N ^ 2 ) - 1 ) / 8 ) = ( ( ( 8 x. ( A ^ 2 ) ) + ( 2 x. ( A x. B ) ) ) + ( ( ( B ^ 2 ) - 1 ) / 8 ) ) ) |