Step |
Hyp |
Ref |
Expression |
1 |
|
4nn0 |
|- 4 e. NN0 |
2 |
|
3nn |
|- 3 e. NN |
3 |
1 2
|
decnncl |
|- ; 4 3 e. NN |
4 |
|
8nn0 |
|- 8 e. NN0 |
5 |
4 1
|
deccl |
|- ; 8 4 e. NN0 |
6 |
|
3nn0 |
|- 3 e. NN0 |
7 |
|
1nn0 |
|- 1 e. NN0 |
8 |
|
3lt10 |
|- 3 < ; 1 0 |
9 |
|
8nn |
|- 8 e. NN |
10 |
|
4lt10 |
|- 4 < ; 1 0 |
11 |
9 1 1 10
|
declti |
|- 4 < ; 8 4 |
12 |
1 5 6 7 8 11
|
decltc |
|- ; 4 3 < ; ; 8 4 1 |
13 |
|
4nn |
|- 4 e. NN |
14 |
|
1lt10 |
|- 1 < ; 1 0 |
15 |
13 6 7 14
|
declti |
|- 1 < ; 4 3 |
16 |
|
2cn |
|- 2 e. CC |
17 |
16
|
mullidi |
|- ( 1 x. 2 ) = 2 |
18 |
|
df-3 |
|- 3 = ( 2 + 1 ) |
19 |
1 7 17 18
|
dec2dvds |
|- -. 2 || ; 4 3 |
20 |
7 1
|
deccl |
|- ; 1 4 e. NN0 |
21 |
|
1nn |
|- 1 e. NN |
22 |
|
0nn0 |
|- 0 e. NN0 |
23 |
|
eqid |
|- ; 1 4 = ; 1 4 |
24 |
7
|
dec0h |
|- 1 = ; 0 1 |
25 |
|
3cn |
|- 3 e. CC |
26 |
25
|
mulridi |
|- ( 3 x. 1 ) = 3 |
27 |
|
ax-1cn |
|- 1 e. CC |
28 |
27
|
addlidi |
|- ( 0 + 1 ) = 1 |
29 |
26 28
|
oveq12i |
|- ( ( 3 x. 1 ) + ( 0 + 1 ) ) = ( 3 + 1 ) |
30 |
|
3p1e4 |
|- ( 3 + 1 ) = 4 |
31 |
29 30
|
eqtri |
|- ( ( 3 x. 1 ) + ( 0 + 1 ) ) = 4 |
32 |
|
2nn0 |
|- 2 e. NN0 |
33 |
|
2p1e3 |
|- ( 2 + 1 ) = 3 |
34 |
|
4cn |
|- 4 e. CC |
35 |
|
4t3e12 |
|- ( 4 x. 3 ) = ; 1 2 |
36 |
34 25 35
|
mulcomli |
|- ( 3 x. 4 ) = ; 1 2 |
37 |
7 32 33 36
|
decsuc |
|- ( ( 3 x. 4 ) + 1 ) = ; 1 3 |
38 |
7 1 22 7 23 24 6 6 7 31 37
|
decma2c |
|- ( ( 3 x. ; 1 4 ) + 1 ) = ; 4 3 |
39 |
|
1lt3 |
|- 1 < 3 |
40 |
2 20 21 38 39
|
ndvdsi |
|- -. 3 || ; 4 3 |
41 |
|
3lt5 |
|- 3 < 5 |
42 |
1 2 41
|
dec5dvds |
|- -. 5 || ; 4 3 |
43 |
|
7nn |
|- 7 e. NN |
44 |
|
6nn0 |
|- 6 e. NN0 |
45 |
|
7t6e42 |
|- ( 7 x. 6 ) = ; 4 2 |
46 |
1 32 33 45
|
decsuc |
|- ( ( 7 x. 6 ) + 1 ) = ; 4 3 |
47 |
|
1lt7 |
|- 1 < 7 |
48 |
43 44 21 46 47
|
ndvdsi |
|- -. 7 || ; 4 3 |
49 |
7 21
|
decnncl |
|- ; 1 1 e. NN |
50 |
21
|
decnncl2 |
|- ; 1 0 e. NN |
51 |
|
eqid |
|- ; 1 1 = ; 1 1 |
52 |
|
eqid |
|- ; 1 0 = ; 1 0 |
53 |
25
|
mullidi |
|- ( 1 x. 3 ) = 3 |
54 |
27
|
addridi |
|- ( 1 + 0 ) = 1 |
55 |
53 54
|
oveq12i |
|- ( ( 1 x. 3 ) + ( 1 + 0 ) ) = ( 3 + 1 ) |
56 |
55 30
|
eqtri |
|- ( ( 1 x. 3 ) + ( 1 + 0 ) ) = 4 |
57 |
53
|
oveq1i |
|- ( ( 1 x. 3 ) + 0 ) = ( 3 + 0 ) |
58 |
25
|
addridi |
|- ( 3 + 0 ) = 3 |
59 |
6
|
dec0h |
|- 3 = ; 0 3 |
60 |
57 58 59
|
3eqtri |
|- ( ( 1 x. 3 ) + 0 ) = ; 0 3 |
61 |
7 7 7 22 51 52 6 6 22 56 60
|
decmac |
|- ( ( ; 1 1 x. 3 ) + ; 1 0 ) = ; 4 3 |
62 |
|
0lt1 |
|- 0 < 1 |
63 |
7 22 21 62
|
declt |
|- ; 1 0 < ; 1 1 |
64 |
49 6 50 61 63
|
ndvdsi |
|- -. ; 1 1 || ; 4 3 |
65 |
7 2
|
decnncl |
|- ; 1 3 e. NN |
66 |
|
eqid |
|- ; 1 3 = ; 1 3 |
67 |
1
|
dec0h |
|- 4 = ; 0 4 |
68 |
53 28
|
oveq12i |
|- ( ( 1 x. 3 ) + ( 0 + 1 ) ) = ( 3 + 1 ) |
69 |
68 30
|
eqtri |
|- ( ( 1 x. 3 ) + ( 0 + 1 ) ) = 4 |
70 |
|
3t3e9 |
|- ( 3 x. 3 ) = 9 |
71 |
70
|
oveq1i |
|- ( ( 3 x. 3 ) + 4 ) = ( 9 + 4 ) |
72 |
|
9p4e13 |
|- ( 9 + 4 ) = ; 1 3 |
73 |
71 72
|
eqtri |
|- ( ( 3 x. 3 ) + 4 ) = ; 1 3 |
74 |
7 6 22 1 66 67 6 6 7 69 73
|
decmac |
|- ( ( ; 1 3 x. 3 ) + 4 ) = ; 4 3 |
75 |
21 6 1 10
|
declti |
|- 4 < ; 1 3 |
76 |
65 6 13 74 75
|
ndvdsi |
|- -. ; 1 3 || ; 4 3 |
77 |
7 43
|
decnncl |
|- ; 1 7 e. NN |
78 |
|
9nn |
|- 9 e. NN |
79 |
43
|
nnnn0i |
|- 7 e. NN0 |
80 |
78
|
nnnn0i |
|- 9 e. NN0 |
81 |
|
eqid |
|- ; 1 7 = ; 1 7 |
82 |
80
|
dec0h |
|- 9 = ; 0 9 |
83 |
16
|
addlidi |
|- ( 0 + 2 ) = 2 |
84 |
17 83
|
oveq12i |
|- ( ( 1 x. 2 ) + ( 0 + 2 ) ) = ( 2 + 2 ) |
85 |
|
2p2e4 |
|- ( 2 + 2 ) = 4 |
86 |
84 85
|
eqtri |
|- ( ( 1 x. 2 ) + ( 0 + 2 ) ) = 4 |
87 |
|
7t2e14 |
|- ( 7 x. 2 ) = ; 1 4 |
88 |
|
1p1e2 |
|- ( 1 + 1 ) = 2 |
89 |
78
|
nncni |
|- 9 e. CC |
90 |
89 34 72
|
addcomli |
|- ( 4 + 9 ) = ; 1 3 |
91 |
7 1 80 87 88 6 90
|
decaddci |
|- ( ( 7 x. 2 ) + 9 ) = ; 2 3 |
92 |
7 79 22 80 81 82 32 6 32 86 91
|
decmac |
|- ( ( ; 1 7 x. 2 ) + 9 ) = ; 4 3 |
93 |
|
9lt10 |
|- 9 < ; 1 0 |
94 |
21 79 80 93
|
declti |
|- 9 < ; 1 7 |
95 |
77 32 78 92 94
|
ndvdsi |
|- -. ; 1 7 || ; 4 3 |
96 |
7 78
|
decnncl |
|- ; 1 9 e. NN |
97 |
|
5nn |
|- 5 e. NN |
98 |
97
|
nnnn0i |
|- 5 e. NN0 |
99 |
|
eqid |
|- ; 1 9 = ; 1 9 |
100 |
98
|
dec0h |
|- 5 = ; 0 5 |
101 |
|
9t2e18 |
|- ( 9 x. 2 ) = ; 1 8 |
102 |
|
8p5e13 |
|- ( 8 + 5 ) = ; 1 3 |
103 |
7 4 98 101 88 6 102
|
decaddci |
|- ( ( 9 x. 2 ) + 5 ) = ; 2 3 |
104 |
7 80 22 98 99 100 32 6 32 86 103
|
decmac |
|- ( ( ; 1 9 x. 2 ) + 5 ) = ; 4 3 |
105 |
|
5lt10 |
|- 5 < ; 1 0 |
106 |
21 80 98 105
|
declti |
|- 5 < ; 1 9 |
107 |
96 32 97 104 106
|
ndvdsi |
|- -. ; 1 9 || ; 4 3 |
108 |
32 2
|
decnncl |
|- ; 2 3 e. NN |
109 |
|
2nn |
|- 2 e. NN |
110 |
109
|
decnncl2 |
|- ; 2 0 e. NN |
111 |
108
|
nncni |
|- ; 2 3 e. CC |
112 |
111
|
mulridi |
|- ( ; 2 3 x. 1 ) = ; 2 3 |
113 |
|
eqid |
|- ; 2 0 = ; 2 0 |
114 |
32 6 32 22 112 113 85 58
|
decadd |
|- ( ( ; 2 3 x. 1 ) + ; 2 0 ) = ; 4 3 |
115 |
|
3pos |
|- 0 < 3 |
116 |
32 22 2 115
|
declt |
|- ; 2 0 < ; 2 3 |
117 |
108 7 110 114 116
|
ndvdsi |
|- -. ; 2 3 || ; 4 3 |
118 |
3 12 15 19 40 42 48 64 76 95 107 117
|
prmlem2 |
|- ; 4 3 e. Prime |