Description: 43 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 43prm | ⊢ ; 4 3 ∈ ℙ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 | ⊢ 4 ∈ ℕ0 | |
| 2 | 3nn | ⊢ 3 ∈ ℕ | |
| 3 | 1 2 | decnncl | ⊢ ; 4 3 ∈ ℕ |
| 4 | 8nn0 | ⊢ 8 ∈ ℕ0 | |
| 5 | 4 1 | deccl | ⊢ ; 8 4 ∈ ℕ0 |
| 6 | 3nn0 | ⊢ 3 ∈ ℕ0 | |
| 7 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 8 | 3lt10 | ⊢ 3 < ; 1 0 | |
| 9 | 8nn | ⊢ 8 ∈ ℕ | |
| 10 | 4lt10 | ⊢ 4 < ; 1 0 | |
| 11 | 9 1 1 10 | declti | ⊢ 4 < ; 8 4 |
| 12 | 1 5 6 7 8 11 | decltc | ⊢ ; 4 3 < ; ; 8 4 1 |
| 13 | 4nn | ⊢ 4 ∈ ℕ | |
| 14 | 1lt10 | ⊢ 1 < ; 1 0 | |
| 15 | 13 6 7 14 | declti | ⊢ 1 < ; 4 3 |
| 16 | 2cn | ⊢ 2 ∈ ℂ | |
| 17 | 16 | mullidi | ⊢ ( 1 · 2 ) = 2 |
| 18 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 19 | 1 7 17 18 | dec2dvds | ⊢ ¬ 2 ∥ ; 4 3 |
| 20 | 7 1 | deccl | ⊢ ; 1 4 ∈ ℕ0 |
| 21 | 1nn | ⊢ 1 ∈ ℕ | |
| 22 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 23 | eqid | ⊢ ; 1 4 = ; 1 4 | |
| 24 | 7 | dec0h | ⊢ 1 = ; 0 1 |
| 25 | 3cn | ⊢ 3 ∈ ℂ | |
| 26 | 25 | mulridi | ⊢ ( 3 · 1 ) = 3 |
| 27 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 28 | 27 | addlidi | ⊢ ( 0 + 1 ) = 1 |
| 29 | 26 28 | oveq12i | ⊢ ( ( 3 · 1 ) + ( 0 + 1 ) ) = ( 3 + 1 ) |
| 30 | 3p1e4 | ⊢ ( 3 + 1 ) = 4 | |
| 31 | 29 30 | eqtri | ⊢ ( ( 3 · 1 ) + ( 0 + 1 ) ) = 4 |
| 32 | 2nn0 | ⊢ 2 ∈ ℕ0 | |
| 33 | 2p1e3 | ⊢ ( 2 + 1 ) = 3 | |
| 34 | 4cn | ⊢ 4 ∈ ℂ | |
| 35 | 4t3e12 | ⊢ ( 4 · 3 ) = ; 1 2 | |
| 36 | 34 25 35 | mulcomli | ⊢ ( 3 · 4 ) = ; 1 2 |
| 37 | 7 32 33 36 | decsuc | ⊢ ( ( 3 · 4 ) + 1 ) = ; 1 3 |
| 38 | 7 1 22 7 23 24 6 6 7 31 37 | decma2c | ⊢ ( ( 3 · ; 1 4 ) + 1 ) = ; 4 3 |
| 39 | 1lt3 | ⊢ 1 < 3 | |
| 40 | 2 20 21 38 39 | ndvdsi | ⊢ ¬ 3 ∥ ; 4 3 |
| 41 | 3lt5 | ⊢ 3 < 5 | |
| 42 | 1 2 41 | dec5dvds | ⊢ ¬ 5 ∥ ; 4 3 |
| 43 | 7nn | ⊢ 7 ∈ ℕ | |
| 44 | 6nn0 | ⊢ 6 ∈ ℕ0 | |
| 45 | 7t6e42 | ⊢ ( 7 · 6 ) = ; 4 2 | |
| 46 | 1 32 33 45 | decsuc | ⊢ ( ( 7 · 6 ) + 1 ) = ; 4 3 |
| 47 | 1lt7 | ⊢ 1 < 7 | |
| 48 | 43 44 21 46 47 | ndvdsi | ⊢ ¬ 7 ∥ ; 4 3 |
| 49 | 7 21 | decnncl | ⊢ ; 1 1 ∈ ℕ |
| 50 | 21 | decnncl2 | ⊢ ; 1 0 ∈ ℕ |
| 51 | eqid | ⊢ ; 1 1 = ; 1 1 | |
| 52 | eqid | ⊢ ; 1 0 = ; 1 0 | |
| 53 | 25 | mullidi | ⊢ ( 1 · 3 ) = 3 |
| 54 | 27 | addridi | ⊢ ( 1 + 0 ) = 1 |
| 55 | 53 54 | oveq12i | ⊢ ( ( 1 · 3 ) + ( 1 + 0 ) ) = ( 3 + 1 ) |
| 56 | 55 30 | eqtri | ⊢ ( ( 1 · 3 ) + ( 1 + 0 ) ) = 4 |
| 57 | 53 | oveq1i | ⊢ ( ( 1 · 3 ) + 0 ) = ( 3 + 0 ) |
| 58 | 25 | addridi | ⊢ ( 3 + 0 ) = 3 |
| 59 | 6 | dec0h | ⊢ 3 = ; 0 3 |
| 60 | 57 58 59 | 3eqtri | ⊢ ( ( 1 · 3 ) + 0 ) = ; 0 3 |
| 61 | 7 7 7 22 51 52 6 6 22 56 60 | decmac | ⊢ ( ( ; 1 1 · 3 ) + ; 1 0 ) = ; 4 3 |
| 62 | 0lt1 | ⊢ 0 < 1 | |
| 63 | 7 22 21 62 | declt | ⊢ ; 1 0 < ; 1 1 |
| 64 | 49 6 50 61 63 | ndvdsi | ⊢ ¬ ; 1 1 ∥ ; 4 3 |
| 65 | 7 2 | decnncl | ⊢ ; 1 3 ∈ ℕ |
| 66 | eqid | ⊢ ; 1 3 = ; 1 3 | |
| 67 | 1 | dec0h | ⊢ 4 = ; 0 4 |
| 68 | 53 28 | oveq12i | ⊢ ( ( 1 · 3 ) + ( 0 + 1 ) ) = ( 3 + 1 ) |
| 69 | 68 30 | eqtri | ⊢ ( ( 1 · 3 ) + ( 0 + 1 ) ) = 4 |
| 70 | 3t3e9 | ⊢ ( 3 · 3 ) = 9 | |
| 71 | 70 | oveq1i | ⊢ ( ( 3 · 3 ) + 4 ) = ( 9 + 4 ) |
| 72 | 9p4e13 | ⊢ ( 9 + 4 ) = ; 1 3 | |
| 73 | 71 72 | eqtri | ⊢ ( ( 3 · 3 ) + 4 ) = ; 1 3 |
| 74 | 7 6 22 1 66 67 6 6 7 69 73 | decmac | ⊢ ( ( ; 1 3 · 3 ) + 4 ) = ; 4 3 |
| 75 | 21 6 1 10 | declti | ⊢ 4 < ; 1 3 |
| 76 | 65 6 13 74 75 | ndvdsi | ⊢ ¬ ; 1 3 ∥ ; 4 3 |
| 77 | 7 43 | decnncl | ⊢ ; 1 7 ∈ ℕ |
| 78 | 9nn | ⊢ 9 ∈ ℕ | |
| 79 | 43 | nnnn0i | ⊢ 7 ∈ ℕ0 |
| 80 | 78 | nnnn0i | ⊢ 9 ∈ ℕ0 |
| 81 | eqid | ⊢ ; 1 7 = ; 1 7 | |
| 82 | 80 | dec0h | ⊢ 9 = ; 0 9 |
| 83 | 16 | addlidi | ⊢ ( 0 + 2 ) = 2 |
| 84 | 17 83 | oveq12i | ⊢ ( ( 1 · 2 ) + ( 0 + 2 ) ) = ( 2 + 2 ) |
| 85 | 2p2e4 | ⊢ ( 2 + 2 ) = 4 | |
| 86 | 84 85 | eqtri | ⊢ ( ( 1 · 2 ) + ( 0 + 2 ) ) = 4 |
| 87 | 7t2e14 | ⊢ ( 7 · 2 ) = ; 1 4 | |
| 88 | 1p1e2 | ⊢ ( 1 + 1 ) = 2 | |
| 89 | 78 | nncni | ⊢ 9 ∈ ℂ |
| 90 | 89 34 72 | addcomli | ⊢ ( 4 + 9 ) = ; 1 3 |
| 91 | 7 1 80 87 88 6 90 | decaddci | ⊢ ( ( 7 · 2 ) + 9 ) = ; 2 3 |
| 92 | 7 79 22 80 81 82 32 6 32 86 91 | decmac | ⊢ ( ( ; 1 7 · 2 ) + 9 ) = ; 4 3 |
| 93 | 9lt10 | ⊢ 9 < ; 1 0 | |
| 94 | 21 79 80 93 | declti | ⊢ 9 < ; 1 7 |
| 95 | 77 32 78 92 94 | ndvdsi | ⊢ ¬ ; 1 7 ∥ ; 4 3 |
| 96 | 7 78 | decnncl | ⊢ ; 1 9 ∈ ℕ |
| 97 | 5nn | ⊢ 5 ∈ ℕ | |
| 98 | 97 | nnnn0i | ⊢ 5 ∈ ℕ0 |
| 99 | eqid | ⊢ ; 1 9 = ; 1 9 | |
| 100 | 98 | dec0h | ⊢ 5 = ; 0 5 |
| 101 | 9t2e18 | ⊢ ( 9 · 2 ) = ; 1 8 | |
| 102 | 8p5e13 | ⊢ ( 8 + 5 ) = ; 1 3 | |
| 103 | 7 4 98 101 88 6 102 | decaddci | ⊢ ( ( 9 · 2 ) + 5 ) = ; 2 3 |
| 104 | 7 80 22 98 99 100 32 6 32 86 103 | decmac | ⊢ ( ( ; 1 9 · 2 ) + 5 ) = ; 4 3 |
| 105 | 5lt10 | ⊢ 5 < ; 1 0 | |
| 106 | 21 80 98 105 | declti | ⊢ 5 < ; 1 9 |
| 107 | 96 32 97 104 106 | ndvdsi | ⊢ ¬ ; 1 9 ∥ ; 4 3 |
| 108 | 32 2 | decnncl | ⊢ ; 2 3 ∈ ℕ |
| 109 | 2nn | ⊢ 2 ∈ ℕ | |
| 110 | 109 | decnncl2 | ⊢ ; 2 0 ∈ ℕ |
| 111 | 108 | nncni | ⊢ ; 2 3 ∈ ℂ |
| 112 | 111 | mulridi | ⊢ ( ; 2 3 · 1 ) = ; 2 3 |
| 113 | eqid | ⊢ ; 2 0 = ; 2 0 | |
| 114 | 32 6 32 22 112 113 85 58 | decadd | ⊢ ( ( ; 2 3 · 1 ) + ; 2 0 ) = ; 4 3 |
| 115 | 3pos | ⊢ 0 < 3 | |
| 116 | 32 22 2 115 | declt | ⊢ ; 2 0 < ; 2 3 |
| 117 | 108 7 110 114 116 | ndvdsi | ⊢ ¬ ; 2 3 ∥ ; 4 3 |
| 118 | 3 12 15 19 40 42 48 64 76 95 107 117 | prmlem2 | ⊢ ; 4 3 ∈ ℙ |