Metamath Proof Explorer


Theorem 83prm

Description: 83 is a prime number. (Contributed by Mario Carneiro, 18-Feb-2014) (Proof shortened by Mario Carneiro, 20-Apr-2015)

Ref Expression
Assertion 83prm 8 3 ∈ ℙ

Proof

Step Hyp Ref Expression
1 8nn0 8 ∈ ℕ0
2 3nn 3 ∈ ℕ
3 1 2 decnncl 8 3 ∈ ℕ
4 4nn0 4 ∈ ℕ0
5 1 4 deccl 8 4 ∈ ℕ0
6 3nn0 3 ∈ ℕ0
7 1nn0 1 ∈ ℕ0
8 3lt10 3 < 1 0
9 8nn 8 ∈ ℕ
10 8lt10 8 < 1 0
11 9 4 1 10 declti 8 < 8 4
12 1 5 6 7 8 11 decltc 8 3 < 8 4 1
13 1lt10 1 < 1 0
14 9 6 7 13 declti 1 < 8 3
15 2cn 2 ∈ ℂ
16 15 mulid2i ( 1 · 2 ) = 2
17 df-3 3 = ( 2 + 1 )
18 1 7 16 17 dec2dvds ¬ 2 ∥ 8 3
19 2nn0 2 ∈ ℕ0
20 7nn0 7 ∈ ℕ0
21 19 20 deccl 2 7 ∈ ℕ0
22 2nn 2 ∈ ℕ
23 0nn0 0 ∈ ℕ0
24 eqid 2 7 = 2 7
25 19 dec0h 2 = 0 2
26 3t2e6 ( 3 · 2 ) = 6
27 15 addid2i ( 0 + 2 ) = 2
28 26 27 oveq12i ( ( 3 · 2 ) + ( 0 + 2 ) ) = ( 6 + 2 )
29 6p2e8 ( 6 + 2 ) = 8
30 28 29 eqtri ( ( 3 · 2 ) + ( 0 + 2 ) ) = 8
31 20 nn0cni 7 ∈ ℂ
32 3cn 3 ∈ ℂ
33 7t3e21 ( 7 · 3 ) = 2 1
34 31 32 33 mulcomli ( 3 · 7 ) = 2 1
35 1p2e3 ( 1 + 2 ) = 3
36 19 7 19 34 35 decaddi ( ( 3 · 7 ) + 2 ) = 2 3
37 19 20 23 19 24 25 6 6 19 30 36 decma2c ( ( 3 · 2 7 ) + 2 ) = 8 3
38 2lt3 2 < 3
39 2 21 22 37 38 ndvdsi ¬ 3 ∥ 8 3
40 3lt5 3 < 5
41 1 2 40 dec5dvds ¬ 5 ∥ 8 3
42 7nn 7 ∈ ℕ
43 7 7 deccl 1 1 ∈ ℕ0
44 6nn 6 ∈ ℕ
45 44 nnnn0i 6 ∈ ℕ0
46 eqid 1 1 = 1 1
47 45 dec0h 6 = 0 6
48 31 mulid1i ( 7 · 1 ) = 7
49 ax-1cn 1 ∈ ℂ
50 49 addid2i ( 0 + 1 ) = 1
51 48 50 oveq12i ( ( 7 · 1 ) + ( 0 + 1 ) ) = ( 7 + 1 )
52 7p1e8 ( 7 + 1 ) = 8
53 51 52 eqtri ( ( 7 · 1 ) + ( 0 + 1 ) ) = 8
54 48 oveq1i ( ( 7 · 1 ) + 6 ) = ( 7 + 6 )
55 7p6e13 ( 7 + 6 ) = 1 3
56 54 55 eqtri ( ( 7 · 1 ) + 6 ) = 1 3
57 7 7 23 45 46 47 20 6 7 53 56 decma2c ( ( 7 · 1 1 ) + 6 ) = 8 3
58 6lt7 6 < 7
59 42 43 44 57 58 ndvdsi ¬ 7 ∥ 8 3
60 1nn 1 ∈ ℕ
61 7 60 decnncl 1 1 ∈ ℕ
62 61 nncni 1 1 ∈ ℂ
63 62 31 mulcomi ( 1 1 · 7 ) = ( 7 · 1 1 )
64 63 oveq1i ( ( 1 1 · 7 ) + 6 ) = ( ( 7 · 1 1 ) + 6 )
65 64 57 eqtri ( ( 1 1 · 7 ) + 6 ) = 8 3
66 6lt10 6 < 1 0
67 60 7 45 66 declti 6 < 1 1
68 61 20 44 65 67 ndvdsi ¬ 1 1 ∥ 8 3
69 7 2 decnncl 1 3 ∈ ℕ
70 5nn 5 ∈ ℕ
71 70 nnnn0i 5 ∈ ℕ0
72 eqid 1 3 = 1 3
73 71 dec0h 5 = 0 5
74 6cn 6 ∈ ℂ
75 74 mulid2i ( 1 · 6 ) = 6
76 75 27 oveq12i ( ( 1 · 6 ) + ( 0 + 2 ) ) = ( 6 + 2 )
77 76 29 eqtri ( ( 1 · 6 ) + ( 0 + 2 ) ) = 8
78 6t3e18 ( 6 · 3 ) = 1 8
79 74 32 78 mulcomli ( 3 · 6 ) = 1 8
80 1p1e2 ( 1 + 1 ) = 2
81 8p5e13 ( 8 + 5 ) = 1 3
82 7 1 71 79 80 6 81 decaddci ( ( 3 · 6 ) + 5 ) = 2 3
83 7 6 23 71 72 73 45 6 19 77 82 decmac ( ( 1 3 · 6 ) + 5 ) = 8 3
84 5lt10 5 < 1 0
85 60 6 71 84 declti 5 < 1 3
86 69 45 70 83 85 ndvdsi ¬ 1 3 ∥ 8 3
87 7 42 decnncl 1 7 ∈ ℕ
88 7 70 decnncl 1 5 ∈ ℕ
89 eqid 1 7 = 1 7
90 eqid 1 5 = 1 5
91 4 nn0cni 4 ∈ ℂ
92 91 mulid2i ( 1 · 4 ) = 4
93 3p1e4 ( 3 + 1 ) = 4
94 32 49 93 addcomli ( 1 + 3 ) = 4
95 92 94 oveq12i ( ( 1 · 4 ) + ( 1 + 3 ) ) = ( 4 + 4 )
96 4p4e8 ( 4 + 4 ) = 8
97 95 96 eqtri ( ( 1 · 4 ) + ( 1 + 3 ) ) = 8
98 7t4e28 ( 7 · 4 ) = 2 8
99 2p1e3 ( 2 + 1 ) = 3
100 19 1 71 98 99 6 81 decaddci ( ( 7 · 4 ) + 5 ) = 3 3
101 7 20 7 71 89 90 4 6 6 97 100 decmac ( ( 1 7 · 4 ) + 1 5 ) = 8 3
102 5lt7 5 < 7
103 7 71 42 102 declt 1 5 < 1 7
104 87 4 88 101 103 ndvdsi ¬ 1 7 ∥ 8 3
105 9nn 9 ∈ ℕ
106 7 105 decnncl 1 9 ∈ ℕ
107 9nn0 9 ∈ ℕ0
108 eqid 1 9 = 1 9
109 20 dec0h 7 = 0 7
110 91 addid2i ( 0 + 4 ) = 4
111 92 110 oveq12i ( ( 1 · 4 ) + ( 0 + 4 ) ) = ( 4 + 4 )
112 111 96 eqtri ( ( 1 · 4 ) + ( 0 + 4 ) ) = 8
113 9t4e36 ( 9 · 4 ) = 3 6
114 31 74 55 addcomli ( 6 + 7 ) = 1 3
115 6 45 20 113 93 6 114 decaddci ( ( 9 · 4 ) + 7 ) = 4 3
116 7 107 23 20 108 109 4 6 4 112 115 decmac ( ( 1 9 · 4 ) + 7 ) = 8 3
117 7lt10 7 < 1 0
118 60 107 20 117 declti 7 < 1 9
119 106 4 42 116 118 ndvdsi ¬ 1 9 ∥ 8 3
120 19 2 decnncl 2 3 ∈ ℕ
121 4nn 4 ∈ ℕ
122 7 121 decnncl 1 4 ∈ ℕ
123 eqid 2 3 = 2 3
124 eqid 1 4 = 1 4
125 32 15 26 mulcomli ( 2 · 3 ) = 6
126 125 80 oveq12i ( ( 2 · 3 ) + ( 1 + 1 ) ) = ( 6 + 2 )
127 126 29 eqtri ( ( 2 · 3 ) + ( 1 + 1 ) ) = 8
128 3t3e9 ( 3 · 3 ) = 9
129 128 oveq1i ( ( 3 · 3 ) + 4 ) = ( 9 + 4 )
130 9p4e13 ( 9 + 4 ) = 1 3
131 129 130 eqtri ( ( 3 · 3 ) + 4 ) = 1 3
132 19 6 7 4 123 124 6 6 7 127 131 decmac ( ( 2 3 · 3 ) + 1 4 ) = 8 3
133 4lt10 4 < 1 0
134 1lt2 1 < 2
135 7 19 4 6 133 134 decltc 1 4 < 2 3
136 120 6 122 132 135 ndvdsi ¬ 2 3 ∥ 8 3
137 3 12 14 18 39 41 59 68 86 104 119 136 prmlem2 8 3 ∈ ℙ