Step |
Hyp |
Ref |
Expression |
1 |
|
5oalem3.1 |
|- A e. SH |
2 |
|
5oalem3.2 |
|- B e. SH |
3 |
|
5oalem3.3 |
|- C e. SH |
4 |
|
5oalem3.4 |
|- D e. SH |
5 |
|
5oalem3.5 |
|- F e. SH |
6 |
|
5oalem3.6 |
|- G e. SH |
7 |
|
anandir |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) <-> ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) ) |
8 |
1 2 5 6
|
5oalem2 |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( x +h y ) = ( f +h g ) ) -> ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) ) |
9 |
3 4 5 6
|
5oalem2 |
|- ( ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( z +h w ) = ( f +h g ) ) -> ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) |
10 |
8 9
|
anim12i |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( x +h y ) = ( f +h g ) ) /\ ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) ) |
11 |
10
|
an4s |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) ) |
12 |
7 11
|
sylanb |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) ) |
13 |
1 5
|
shscli |
|- ( A +H F ) e. SH |
14 |
2 6
|
shscli |
|- ( B +H G ) e. SH |
15 |
13 14
|
shincli |
|- ( ( A +H F ) i^i ( B +H G ) ) e. SH |
16 |
3 5
|
shscli |
|- ( C +H F ) e. SH |
17 |
4 6
|
shscli |
|- ( D +H G ) e. SH |
18 |
16 17
|
shincli |
|- ( ( C +H F ) i^i ( D +H G ) ) e. SH |
19 |
15 18
|
shsvsi |
|- ( ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) |
20 |
12 19
|
syl |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) |
21 |
1
|
sheli |
|- ( x e. A -> x e. ~H ) |
22 |
21
|
adantr |
|- ( ( x e. A /\ y e. B ) -> x e. ~H ) |
23 |
3
|
sheli |
|- ( z e. C -> z e. ~H ) |
24 |
23
|
adantr |
|- ( ( z e. C /\ w e. D ) -> z e. ~H ) |
25 |
22 24
|
anim12i |
|- ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) -> ( x e. ~H /\ z e. ~H ) ) |
26 |
5
|
sheli |
|- ( f e. F -> f e. ~H ) |
27 |
26
|
adantr |
|- ( ( f e. F /\ g e. G ) -> f e. ~H ) |
28 |
|
hvsubsub4 |
|- ( ( ( x e. ~H /\ f e. ~H ) /\ ( z e. ~H /\ f e. ~H ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( ( x -h z ) -h ( f -h f ) ) ) |
29 |
28
|
anandirs |
|- ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h f ) -h ( z -h f ) ) = ( ( x -h z ) -h ( f -h f ) ) ) |
30 |
|
hvsubid |
|- ( f e. ~H -> ( f -h f ) = 0h ) |
31 |
30
|
oveq2d |
|- ( f e. ~H -> ( ( x -h z ) -h ( f -h f ) ) = ( ( x -h z ) -h 0h ) ) |
32 |
|
hvsubcl |
|- ( ( x e. ~H /\ z e. ~H ) -> ( x -h z ) e. ~H ) |
33 |
|
hvsub0 |
|- ( ( x -h z ) e. ~H -> ( ( x -h z ) -h 0h ) = ( x -h z ) ) |
34 |
32 33
|
syl |
|- ( ( x e. ~H /\ z e. ~H ) -> ( ( x -h z ) -h 0h ) = ( x -h z ) ) |
35 |
31 34
|
sylan9eqr |
|- ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h z ) -h ( f -h f ) ) = ( x -h z ) ) |
36 |
29 35
|
eqtrd |
|- ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) |
37 |
25 27 36
|
syl2an |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) |
38 |
37
|
eleq1d |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) -> ( ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) <-> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) ) |
39 |
38
|
adantr |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) <-> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) ) |
40 |
20 39
|
mpbid |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) |