| Step |
Hyp |
Ref |
Expression |
| 1 |
|
5oalem3.1 |
|- A e. SH |
| 2 |
|
5oalem3.2 |
|- B e. SH |
| 3 |
|
5oalem3.3 |
|- C e. SH |
| 4 |
|
5oalem3.4 |
|- D e. SH |
| 5 |
|
5oalem3.5 |
|- F e. SH |
| 6 |
|
5oalem3.6 |
|- G e. SH |
| 7 |
|
anandir |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) <-> ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) ) |
| 8 |
1 2 5 6
|
5oalem2 |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( x +h y ) = ( f +h g ) ) -> ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) ) |
| 9 |
3 4 5 6
|
5oalem2 |
|- ( ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( z +h w ) = ( f +h g ) ) -> ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) |
| 10 |
8 9
|
anim12i |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( x +h y ) = ( f +h g ) ) /\ ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) ) |
| 11 |
10
|
an4s |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) ) |
| 12 |
7 11
|
sylanb |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) ) |
| 13 |
1 5
|
shscli |
|- ( A +H F ) e. SH |
| 14 |
2 6
|
shscli |
|- ( B +H G ) e. SH |
| 15 |
13 14
|
shincli |
|- ( ( A +H F ) i^i ( B +H G ) ) e. SH |
| 16 |
3 5
|
shscli |
|- ( C +H F ) e. SH |
| 17 |
4 6
|
shscli |
|- ( D +H G ) e. SH |
| 18 |
16 17
|
shincli |
|- ( ( C +H F ) i^i ( D +H G ) ) e. SH |
| 19 |
15 18
|
shsvsi |
|- ( ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) |
| 20 |
12 19
|
syl |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) |
| 21 |
1
|
sheli |
|- ( x e. A -> x e. ~H ) |
| 22 |
21
|
adantr |
|- ( ( x e. A /\ y e. B ) -> x e. ~H ) |
| 23 |
3
|
sheli |
|- ( z e. C -> z e. ~H ) |
| 24 |
23
|
adantr |
|- ( ( z e. C /\ w e. D ) -> z e. ~H ) |
| 25 |
22 24
|
anim12i |
|- ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) -> ( x e. ~H /\ z e. ~H ) ) |
| 26 |
5
|
sheli |
|- ( f e. F -> f e. ~H ) |
| 27 |
26
|
adantr |
|- ( ( f e. F /\ g e. G ) -> f e. ~H ) |
| 28 |
|
hvsubsub4 |
|- ( ( ( x e. ~H /\ f e. ~H ) /\ ( z e. ~H /\ f e. ~H ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( ( x -h z ) -h ( f -h f ) ) ) |
| 29 |
28
|
anandirs |
|- ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h f ) -h ( z -h f ) ) = ( ( x -h z ) -h ( f -h f ) ) ) |
| 30 |
|
hvsubid |
|- ( f e. ~H -> ( f -h f ) = 0h ) |
| 31 |
30
|
oveq2d |
|- ( f e. ~H -> ( ( x -h z ) -h ( f -h f ) ) = ( ( x -h z ) -h 0h ) ) |
| 32 |
|
hvsubcl |
|- ( ( x e. ~H /\ z e. ~H ) -> ( x -h z ) e. ~H ) |
| 33 |
|
hvsub0 |
|- ( ( x -h z ) e. ~H -> ( ( x -h z ) -h 0h ) = ( x -h z ) ) |
| 34 |
32 33
|
syl |
|- ( ( x e. ~H /\ z e. ~H ) -> ( ( x -h z ) -h 0h ) = ( x -h z ) ) |
| 35 |
31 34
|
sylan9eqr |
|- ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h z ) -h ( f -h f ) ) = ( x -h z ) ) |
| 36 |
29 35
|
eqtrd |
|- ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) |
| 37 |
25 27 36
|
syl2an |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) |
| 38 |
37
|
eleq1d |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) -> ( ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) <-> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) ) |
| 39 |
38
|
adantr |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) <-> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) ) |
| 40 |
20 39
|
mpbid |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) |