| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 5oalem3.1 |  |-  A e. SH | 
						
							| 2 |  | 5oalem3.2 |  |-  B e. SH | 
						
							| 3 |  | 5oalem3.3 |  |-  C e. SH | 
						
							| 4 |  | 5oalem3.4 |  |-  D e. SH | 
						
							| 5 |  | 5oalem3.5 |  |-  F e. SH | 
						
							| 6 |  | 5oalem3.6 |  |-  G e. SH | 
						
							| 7 |  | anandir |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) <-> ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) ) | 
						
							| 8 | 1 2 5 6 | 5oalem2 |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( x +h y ) = ( f +h g ) ) -> ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) ) | 
						
							| 9 | 3 4 5 6 | 5oalem2 |  |-  ( ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( z +h w ) = ( f +h g ) ) -> ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) | 
						
							| 10 | 8 9 | anim12i |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( x +h y ) = ( f +h g ) ) /\ ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) ) | 
						
							| 11 | 10 | an4s |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) ) | 
						
							| 12 | 7 11 | sylanb |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) ) | 
						
							| 13 | 1 5 | shscli |  |-  ( A +H F ) e. SH | 
						
							| 14 | 2 6 | shscli |  |-  ( B +H G ) e. SH | 
						
							| 15 | 13 14 | shincli |  |-  ( ( A +H F ) i^i ( B +H G ) ) e. SH | 
						
							| 16 | 3 5 | shscli |  |-  ( C +H F ) e. SH | 
						
							| 17 | 4 6 | shscli |  |-  ( D +H G ) e. SH | 
						
							| 18 | 16 17 | shincli |  |-  ( ( C +H F ) i^i ( D +H G ) ) e. SH | 
						
							| 19 | 15 18 | shsvsi |  |-  ( ( ( x -h f ) e. ( ( A +H F ) i^i ( B +H G ) ) /\ ( z -h f ) e. ( ( C +H F ) i^i ( D +H G ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) | 
						
							| 20 | 12 19 | syl |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) | 
						
							| 21 | 1 | sheli |  |-  ( x e. A -> x e. ~H ) | 
						
							| 22 | 21 | adantr |  |-  ( ( x e. A /\ y e. B ) -> x e. ~H ) | 
						
							| 23 | 3 | sheli |  |-  ( z e. C -> z e. ~H ) | 
						
							| 24 | 23 | adantr |  |-  ( ( z e. C /\ w e. D ) -> z e. ~H ) | 
						
							| 25 | 22 24 | anim12i |  |-  ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) -> ( x e. ~H /\ z e. ~H ) ) | 
						
							| 26 | 5 | sheli |  |-  ( f e. F -> f e. ~H ) | 
						
							| 27 | 26 | adantr |  |-  ( ( f e. F /\ g e. G ) -> f e. ~H ) | 
						
							| 28 |  | hvsubsub4 |  |-  ( ( ( x e. ~H /\ f e. ~H ) /\ ( z e. ~H /\ f e. ~H ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( ( x -h z ) -h ( f -h f ) ) ) | 
						
							| 29 | 28 | anandirs |  |-  ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h f ) -h ( z -h f ) ) = ( ( x -h z ) -h ( f -h f ) ) ) | 
						
							| 30 |  | hvsubid |  |-  ( f e. ~H -> ( f -h f ) = 0h ) | 
						
							| 31 | 30 | oveq2d |  |-  ( f e. ~H -> ( ( x -h z ) -h ( f -h f ) ) = ( ( x -h z ) -h 0h ) ) | 
						
							| 32 |  | hvsubcl |  |-  ( ( x e. ~H /\ z e. ~H ) -> ( x -h z ) e. ~H ) | 
						
							| 33 |  | hvsub0 |  |-  ( ( x -h z ) e. ~H -> ( ( x -h z ) -h 0h ) = ( x -h z ) ) | 
						
							| 34 | 32 33 | syl |  |-  ( ( x e. ~H /\ z e. ~H ) -> ( ( x -h z ) -h 0h ) = ( x -h z ) ) | 
						
							| 35 | 31 34 | sylan9eqr |  |-  ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h z ) -h ( f -h f ) ) = ( x -h z ) ) | 
						
							| 36 | 29 35 | eqtrd |  |-  ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) | 
						
							| 37 | 25 27 36 | syl2an |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) | 
						
							| 38 | 37 | eleq1d |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) -> ( ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) <-> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) <-> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) ) | 
						
							| 40 | 20 39 | mpbid |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) |