Metamath Proof Explorer


Theorem 5oalem3

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem3.1 A S
5oalem3.2 B S
5oalem3.3 C S
5oalem3.4 D S
5oalem3.5 F S
5oalem3.6 G S
Assertion 5oalem3 x A y B z C w D f F g G x + y = f + g z + w = f + g x - z A + F B + G + C + F D + G

Proof

Step Hyp Ref Expression
1 5oalem3.1 A S
2 5oalem3.2 B S
3 5oalem3.3 C S
4 5oalem3.4 D S
5 5oalem3.5 F S
6 5oalem3.6 G S
7 anandir x A y B z C w D f F g G x A y B f F g G z C w D f F g G
8 1 2 5 6 5oalem2 x A y B f F g G x + y = f + g x - f A + F B + G
9 3 4 5 6 5oalem2 z C w D f F g G z + w = f + g z - f C + F D + G
10 8 9 anim12i x A y B f F g G x + y = f + g z C w D f F g G z + w = f + g x - f A + F B + G z - f C + F D + G
11 10 an4s x A y B f F g G z C w D f F g G x + y = f + g z + w = f + g x - f A + F B + G z - f C + F D + G
12 7 11 sylanb x A y B z C w D f F g G x + y = f + g z + w = f + g x - f A + F B + G z - f C + F D + G
13 1 5 shscli A + F S
14 2 6 shscli B + G S
15 13 14 shincli A + F B + G S
16 3 5 shscli C + F S
17 4 6 shscli D + G S
18 16 17 shincli C + F D + G S
19 15 18 shsvsi x - f A + F B + G z - f C + F D + G x - f - z - f A + F B + G + C + F D + G
20 12 19 syl x A y B z C w D f F g G x + y = f + g z + w = f + g x - f - z - f A + F B + G + C + F D + G
21 1 sheli x A x
22 21 adantr x A y B x
23 3 sheli z C z
24 23 adantr z C w D z
25 22 24 anim12i x A y B z C w D x z
26 5 sheli f F f
27 26 adantr f F g G f
28 hvsubsub4 x f z f x - f - z - f = x - z - f - f
29 28 anandirs x z f x - f - z - f = x - z - f - f
30 hvsubid f f - f = 0
31 30 oveq2d f x - z - f - f = x - z - 0
32 hvsubcl x z x - z
33 hvsub0 x - z x - z - 0 = x - z
34 32 33 syl x z x - z - 0 = x - z
35 31 34 sylan9eqr x z f x - z - f - f = x - z
36 29 35 eqtrd x z f x - f - z - f = x - z
37 25 27 36 syl2an x A y B z C w D f F g G x - f - z - f = x - z
38 37 eleq1d x A y B z C w D f F g G x - f - z - f A + F B + G + C + F D + G x - z A + F B + G + C + F D + G
39 38 adantr x A y B z C w D f F g G x + y = f + g z + w = f + g x - f - z - f A + F B + G + C + F D + G x - z A + F B + G + C + F D + G
40 20 39 mpbid x A y B z C w D f F g G x + y = f + g z + w = f + g x - z A + F B + G + C + F D + G