Metamath Proof Explorer


Theorem 5oalem4

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem3.1 AS
5oalem3.2 BS
5oalem3.3 CS
5oalem3.4 DS
5oalem3.5 FS
5oalem3.6 GS
Assertion 5oalem4 xAyBzCwDfFgGx+y=f+gz+w=f+gx-zA+CB+DA+FB+G+C+FD+G

Proof

Step Hyp Ref Expression
1 5oalem3.1 AS
2 5oalem3.2 BS
3 5oalem3.3 CS
4 5oalem3.4 DS
5 5oalem3.5 FS
6 5oalem3.6 GS
7 eqtr3 x+y=f+gz+w=f+gx+y=z+w
8 1 2 3 4 5oalem2 xAyBzCwDx+y=z+wx-zA+CB+D
9 7 8 sylan2 xAyBzCwDx+y=f+gz+w=f+gx-zA+CB+D
10 9 adantlr xAyBzCwDfFgGx+y=f+gz+w=f+gx-zA+CB+D
11 1 2 3 4 5 6 5oalem3 xAyBzCwDfFgGx+y=f+gz+w=f+gx-zA+FB+G+C+FD+G
12 10 11 elind xAyBzCwDfFgGx+y=f+gz+w=f+gx-zA+CB+DA+FB+G+C+FD+G