Metamath Proof Explorer


Theorem 5oalem5

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-May-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem5.1 A S
5oalem5.2 B S
5oalem5.3 C S
5oalem5.4 D S
5oalem5.5 F S
5oalem5.6 G S
5oalem5.7 R S
5oalem5.8 S S
Assertion 5oalem5 x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u x - z A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S

Proof

Step Hyp Ref Expression
1 5oalem5.1 A S
2 5oalem5.2 B S
3 5oalem5.3 C S
4 5oalem5.4 D S
5 5oalem5.5 F S
6 5oalem5.6 G S
7 5oalem5.7 R S
8 5oalem5.8 S S
9 simpr f F g G v R u S v R u S
10 9 anim2i x A y B z C w D f F g G v R u S x A y B z C w D v R u S
11 simpl x + y = v + u z + w = v + u f + g = v + u x + y = v + u z + w = v + u
12 1 2 3 4 7 8 5oalem4 x A y B z C w D v R u S x + y = v + u z + w = v + u x - z A + C B + D A + R B + S + C + R D + S
13 10 11 12 syl2an x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u x - z A + C B + D A + R B + S + C + R D + S
14 1 sheli x A x
15 14 adantr x A y B x
16 3 sheli z C z
17 16 adantr z C w D z
18 15 17 anim12i x A y B z C w D x z
19 5 sheli f F f
20 19 adantr f F g G f
21 hvsubsub4 x f z f x - f - z - f = x - z - f - f
22 21 anandirs x z f x - f - z - f = x - z - f - f
23 hvsubid f f - f = 0
24 23 oveq2d f x - z - f - f = x - z - 0
25 hvsubcl x z x - z
26 hvsub0 x - z x - z - 0 = x - z
27 25 26 syl x z x - z - 0 = x - z
28 24 27 sylan9eqr x z f x - z - f - f = x - z
29 22 28 eqtrd x z f x - f - z - f = x - z
30 18 20 29 syl2an x A y B z C w D f F g G x - f - z - f = x - z
31 30 adantrr x A y B z C w D f F g G v R u S x - f - z - f = x - z
32 31 adantr x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u x - f - z - f = x - z
33 simpl f F g G v R u S f F g G
34 33 anim2i x A y B z C w D f F g G v R u S x A y B z C w D f F g G
35 anandir x A y B z C w D f F g G x A y B f F g G z C w D f F g G
36 34 35 sylib x A y B z C w D f F g G v R u S x A y B f F g G z C w D f F g G
37 simprr x A y B z C w D f F g G v R u S v R u S
38 36 37 jca x A y B z C w D f F g G v R u S x A y B f F g G z C w D f F g G v R u S
39 simpl x + y = v + u z + w = v + u x + y = v + u
40 39 anim1i x + y = v + u z + w = v + u f + g = v + u x + y = v + u f + g = v + u
41 simpr x + y = v + u z + w = v + u z + w = v + u
42 41 anim1i x + y = v + u z + w = v + u f + g = v + u z + w = v + u f + g = v + u
43 40 42 jca x + y = v + u z + w = v + u f + g = v + u x + y = v + u f + g = v + u z + w = v + u f + g = v + u
44 anandir x A y B f F g G z C w D f F g G v R u S x A y B f F g G v R u S z C w D f F g G v R u S
45 1 2 5 6 7 8 5oalem4 x A y B f F g G v R u S x + y = v + u f + g = v + u x - f A + F B + G A + R B + S + F + R G + S
46 3 4 5 6 7 8 5oalem4 z C w D f F g G v R u S z + w = v + u f + g = v + u z - f C + F D + G C + R D + S + F + R G + S
47 45 46 anim12i x A y B f F g G v R u S x + y = v + u f + g = v + u z C w D f F g G v R u S z + w = v + u f + g = v + u x - f A + F B + G A + R B + S + F + R G + S z - f C + F D + G C + R D + S + F + R G + S
48 47 an4s x A y B f F g G v R u S z C w D f F g G v R u S x + y = v + u f + g = v + u z + w = v + u f + g = v + u x - f A + F B + G A + R B + S + F + R G + S z - f C + F D + G C + R D + S + F + R G + S
49 44 48 sylanb x A y B f F g G z C w D f F g G v R u S x + y = v + u f + g = v + u z + w = v + u f + g = v + u x - f A + F B + G A + R B + S + F + R G + S z - f C + F D + G C + R D + S + F + R G + S
50 38 43 49 syl2an x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u x - f A + F B + G A + R B + S + F + R G + S z - f C + F D + G C + R D + S + F + R G + S
51 1 5 shscli A + F S
52 2 6 shscli B + G S
53 51 52 shincli A + F B + G S
54 1 7 shscli A + R S
55 2 8 shscli B + S S
56 54 55 shincli A + R B + S S
57 5 7 shscli F + R S
58 6 8 shscli G + S S
59 57 58 shincli F + R G + S S
60 56 59 shscli A + R B + S + F + R G + S S
61 53 60 shincli A + F B + G A + R B + S + F + R G + S S
62 3 5 shscli C + F S
63 4 6 shscli D + G S
64 62 63 shincli C + F D + G S
65 3 7 shscli C + R S
66 4 8 shscli D + S S
67 65 66 shincli C + R D + S S
68 67 59 shscli C + R D + S + F + R G + S S
69 64 68 shincli C + F D + G C + R D + S + F + R G + S S
70 61 69 shsvsi x - f A + F B + G A + R B + S + F + R G + S z - f C + F D + G C + R D + S + F + R G + S x - f - z - f A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
71 50 70 syl x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u x - f - z - f A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
72 32 71 eqeltrrd x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u x - z A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
73 13 72 elind x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u x - z A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S