Step |
Hyp |
Ref |
Expression |
1 |
|
5oalem5.1 |
|- A e. SH |
2 |
|
5oalem5.2 |
|- B e. SH |
3 |
|
5oalem5.3 |
|- C e. SH |
4 |
|
5oalem5.4 |
|- D e. SH |
5 |
|
5oalem5.5 |
|- F e. SH |
6 |
|
5oalem5.6 |
|- G e. SH |
7 |
|
5oalem5.7 |
|- R e. SH |
8 |
|
5oalem5.8 |
|- S e. SH |
9 |
|
simpr |
|- ( ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) -> ( v e. R /\ u e. S ) ) |
10 |
9
|
anim2i |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( v e. R /\ u e. S ) ) ) |
11 |
|
simpl |
|- ( ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) -> ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) ) |
12 |
1 2 3 4 7 8
|
5oalem4 |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) ) |
13 |
10 11 12
|
syl2an |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) ) |
14 |
1
|
sheli |
|- ( x e. A -> x e. ~H ) |
15 |
14
|
adantr |
|- ( ( x e. A /\ y e. B ) -> x e. ~H ) |
16 |
3
|
sheli |
|- ( z e. C -> z e. ~H ) |
17 |
16
|
adantr |
|- ( ( z e. C /\ w e. D ) -> z e. ~H ) |
18 |
15 17
|
anim12i |
|- ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) -> ( x e. ~H /\ z e. ~H ) ) |
19 |
5
|
sheli |
|- ( f e. F -> f e. ~H ) |
20 |
19
|
adantr |
|- ( ( f e. F /\ g e. G ) -> f e. ~H ) |
21 |
|
hvsubsub4 |
|- ( ( ( x e. ~H /\ f e. ~H ) /\ ( z e. ~H /\ f e. ~H ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( ( x -h z ) -h ( f -h f ) ) ) |
22 |
21
|
anandirs |
|- ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h f ) -h ( z -h f ) ) = ( ( x -h z ) -h ( f -h f ) ) ) |
23 |
|
hvsubid |
|- ( f e. ~H -> ( f -h f ) = 0h ) |
24 |
23
|
oveq2d |
|- ( f e. ~H -> ( ( x -h z ) -h ( f -h f ) ) = ( ( x -h z ) -h 0h ) ) |
25 |
|
hvsubcl |
|- ( ( x e. ~H /\ z e. ~H ) -> ( x -h z ) e. ~H ) |
26 |
|
hvsub0 |
|- ( ( x -h z ) e. ~H -> ( ( x -h z ) -h 0h ) = ( x -h z ) ) |
27 |
25 26
|
syl |
|- ( ( x e. ~H /\ z e. ~H ) -> ( ( x -h z ) -h 0h ) = ( x -h z ) ) |
28 |
24 27
|
sylan9eqr |
|- ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h z ) -h ( f -h f ) ) = ( x -h z ) ) |
29 |
22 28
|
eqtrd |
|- ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) |
30 |
18 20 29
|
syl2an |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) |
31 |
30
|
adantrr |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) |
32 |
31
|
adantr |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) |
33 |
|
simpl |
|- ( ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) -> ( f e. F /\ g e. G ) ) |
34 |
33
|
anim2i |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) ) |
35 |
|
anandir |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) <-> ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) ) |
36 |
34 35
|
sylib |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) ) |
37 |
|
simprr |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( v e. R /\ u e. S ) ) |
38 |
36 37
|
jca |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) /\ ( v e. R /\ u e. S ) ) ) |
39 |
|
simpl |
|- ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) -> ( x +h y ) = ( v +h u ) ) |
40 |
39
|
anim1i |
|- ( ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) -> ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) |
41 |
|
simpr |
|- ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) -> ( z +h w ) = ( v +h u ) ) |
42 |
41
|
anim1i |
|- ( ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) -> ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) |
43 |
40 42
|
jca |
|- ( ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) /\ ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) ) |
44 |
|
anandir |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) /\ ( v e. R /\ u e. S ) ) <-> ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) ) ) |
45 |
1 2 5 6 7 8
|
5oalem4 |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) |
46 |
3 4 5 6 7 8
|
5oalem4 |
|- ( ( ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) |
47 |
45 46
|
anim12i |
|- ( ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) /\ ( ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) ) -> ( ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) /\ ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) |
48 |
47
|
an4s |
|- ( ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) /\ ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) ) -> ( ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) /\ ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) |
49 |
44 48
|
sylanb |
|- ( ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) /\ ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) ) -> ( ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) /\ ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) |
50 |
38 43 49
|
syl2an |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) /\ ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) |
51 |
1 5
|
shscli |
|- ( A +H F ) e. SH |
52 |
2 6
|
shscli |
|- ( B +H G ) e. SH |
53 |
51 52
|
shincli |
|- ( ( A +H F ) i^i ( B +H G ) ) e. SH |
54 |
1 7
|
shscli |
|- ( A +H R ) e. SH |
55 |
2 8
|
shscli |
|- ( B +H S ) e. SH |
56 |
54 55
|
shincli |
|- ( ( A +H R ) i^i ( B +H S ) ) e. SH |
57 |
5 7
|
shscli |
|- ( F +H R ) e. SH |
58 |
6 8
|
shscli |
|- ( G +H S ) e. SH |
59 |
57 58
|
shincli |
|- ( ( F +H R ) i^i ( G +H S ) ) e. SH |
60 |
56 59
|
shscli |
|- ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) e. SH |
61 |
53 60
|
shincli |
|- ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) e. SH |
62 |
3 5
|
shscli |
|- ( C +H F ) e. SH |
63 |
4 6
|
shscli |
|- ( D +H G ) e. SH |
64 |
62 63
|
shincli |
|- ( ( C +H F ) i^i ( D +H G ) ) e. SH |
65 |
3 7
|
shscli |
|- ( C +H R ) e. SH |
66 |
4 8
|
shscli |
|- ( D +H S ) e. SH |
67 |
65 66
|
shincli |
|- ( ( C +H R ) i^i ( D +H S ) ) e. SH |
68 |
67 59
|
shscli |
|- ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) e. SH |
69 |
64 68
|
shincli |
|- ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) e. SH |
70 |
61 69
|
shsvsi |
|- ( ( ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) /\ ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) |
71 |
50 70
|
syl |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) |
72 |
32 71
|
eqeltrrd |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) |
73 |
13 72
|
elind |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) |