| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 5oalem5.1 |  |-  A e. SH | 
						
							| 2 |  | 5oalem5.2 |  |-  B e. SH | 
						
							| 3 |  | 5oalem5.3 |  |-  C e. SH | 
						
							| 4 |  | 5oalem5.4 |  |-  D e. SH | 
						
							| 5 |  | 5oalem5.5 |  |-  F e. SH | 
						
							| 6 |  | 5oalem5.6 |  |-  G e. SH | 
						
							| 7 |  | 5oalem5.7 |  |-  R e. SH | 
						
							| 8 |  | 5oalem5.8 |  |-  S e. SH | 
						
							| 9 |  | simpr |  |-  ( ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) -> ( v e. R /\ u e. S ) ) | 
						
							| 10 | 9 | anim2i |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( v e. R /\ u e. S ) ) ) | 
						
							| 11 |  | simpl |  |-  ( ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) -> ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) ) | 
						
							| 12 | 1 2 3 4 7 8 | 5oalem4 |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) ) | 
						
							| 13 | 10 11 12 | syl2an |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) ) | 
						
							| 14 | 1 | sheli |  |-  ( x e. A -> x e. ~H ) | 
						
							| 15 | 14 | adantr |  |-  ( ( x e. A /\ y e. B ) -> x e. ~H ) | 
						
							| 16 | 3 | sheli |  |-  ( z e. C -> z e. ~H ) | 
						
							| 17 | 16 | adantr |  |-  ( ( z e. C /\ w e. D ) -> z e. ~H ) | 
						
							| 18 | 15 17 | anim12i |  |-  ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) -> ( x e. ~H /\ z e. ~H ) ) | 
						
							| 19 | 5 | sheli |  |-  ( f e. F -> f e. ~H ) | 
						
							| 20 | 19 | adantr |  |-  ( ( f e. F /\ g e. G ) -> f e. ~H ) | 
						
							| 21 |  | hvsubsub4 |  |-  ( ( ( x e. ~H /\ f e. ~H ) /\ ( z e. ~H /\ f e. ~H ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( ( x -h z ) -h ( f -h f ) ) ) | 
						
							| 22 | 21 | anandirs |  |-  ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h f ) -h ( z -h f ) ) = ( ( x -h z ) -h ( f -h f ) ) ) | 
						
							| 23 |  | hvsubid |  |-  ( f e. ~H -> ( f -h f ) = 0h ) | 
						
							| 24 | 23 | oveq2d |  |-  ( f e. ~H -> ( ( x -h z ) -h ( f -h f ) ) = ( ( x -h z ) -h 0h ) ) | 
						
							| 25 |  | hvsubcl |  |-  ( ( x e. ~H /\ z e. ~H ) -> ( x -h z ) e. ~H ) | 
						
							| 26 |  | hvsub0 |  |-  ( ( x -h z ) e. ~H -> ( ( x -h z ) -h 0h ) = ( x -h z ) ) | 
						
							| 27 | 25 26 | syl |  |-  ( ( x e. ~H /\ z e. ~H ) -> ( ( x -h z ) -h 0h ) = ( x -h z ) ) | 
						
							| 28 | 24 27 | sylan9eqr |  |-  ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h z ) -h ( f -h f ) ) = ( x -h z ) ) | 
						
							| 29 | 22 28 | eqtrd |  |-  ( ( ( x e. ~H /\ z e. ~H ) /\ f e. ~H ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) | 
						
							| 30 | 18 20 29 | syl2an |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) | 
						
							| 31 | 30 | adantrr |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) | 
						
							| 32 | 31 | adantr |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) = ( x -h z ) ) | 
						
							| 33 |  | simpl |  |-  ( ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) -> ( f e. F /\ g e. G ) ) | 
						
							| 34 | 33 | anim2i |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) ) | 
						
							| 35 |  | anandir |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) <-> ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) ) | 
						
							| 36 | 34 35 | sylib |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) ) | 
						
							| 37 |  | simprr |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( v e. R /\ u e. S ) ) | 
						
							| 38 | 36 37 | jca |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) /\ ( v e. R /\ u e. S ) ) ) | 
						
							| 39 |  | simpl |  |-  ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) -> ( x +h y ) = ( v +h u ) ) | 
						
							| 40 | 39 | anim1i |  |-  ( ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) -> ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) | 
						
							| 41 |  | simpr |  |-  ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) -> ( z +h w ) = ( v +h u ) ) | 
						
							| 42 | 41 | anim1i |  |-  ( ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) -> ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) | 
						
							| 43 | 40 42 | jca |  |-  ( ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) /\ ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) ) | 
						
							| 44 |  | anandir |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) /\ ( v e. R /\ u e. S ) ) <-> ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) ) ) | 
						
							| 45 | 1 2 5 6 7 8 | 5oalem4 |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) | 
						
							| 46 | 3 4 5 6 7 8 | 5oalem4 |  |-  ( ( ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) | 
						
							| 47 | 45 46 | anim12i |  |-  ( ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) /\ ( ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) ) -> ( ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) /\ ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) | 
						
							| 48 | 47 | an4s |  |-  ( ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) /\ ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) ) -> ( ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) /\ ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) | 
						
							| 49 | 44 48 | sylanb |  |-  ( ( ( ( ( ( x e. A /\ y e. B ) /\ ( f e. F /\ g e. G ) ) /\ ( ( z e. C /\ w e. D ) /\ ( f e. F /\ g e. G ) ) ) /\ ( v e. R /\ u e. S ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) /\ ( ( z +h w ) = ( v +h u ) /\ ( f +h g ) = ( v +h u ) ) ) ) -> ( ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) /\ ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) | 
						
							| 50 | 38 43 49 | syl2an |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) /\ ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) | 
						
							| 51 | 1 5 | shscli |  |-  ( A +H F ) e. SH | 
						
							| 52 | 2 6 | shscli |  |-  ( B +H G ) e. SH | 
						
							| 53 | 51 52 | shincli |  |-  ( ( A +H F ) i^i ( B +H G ) ) e. SH | 
						
							| 54 | 1 7 | shscli |  |-  ( A +H R ) e. SH | 
						
							| 55 | 2 8 | shscli |  |-  ( B +H S ) e. SH | 
						
							| 56 | 54 55 | shincli |  |-  ( ( A +H R ) i^i ( B +H S ) ) e. SH | 
						
							| 57 | 5 7 | shscli |  |-  ( F +H R ) e. SH | 
						
							| 58 | 6 8 | shscli |  |-  ( G +H S ) e. SH | 
						
							| 59 | 57 58 | shincli |  |-  ( ( F +H R ) i^i ( G +H S ) ) e. SH | 
						
							| 60 | 56 59 | shscli |  |-  ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) e. SH | 
						
							| 61 | 53 60 | shincli |  |-  ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) e. SH | 
						
							| 62 | 3 5 | shscli |  |-  ( C +H F ) e. SH | 
						
							| 63 | 4 6 | shscli |  |-  ( D +H G ) e. SH | 
						
							| 64 | 62 63 | shincli |  |-  ( ( C +H F ) i^i ( D +H G ) ) e. SH | 
						
							| 65 | 3 7 | shscli |  |-  ( C +H R ) e. SH | 
						
							| 66 | 4 8 | shscli |  |-  ( D +H S ) e. SH | 
						
							| 67 | 65 66 | shincli |  |-  ( ( C +H R ) i^i ( D +H S ) ) e. SH | 
						
							| 68 | 67 59 | shscli |  |-  ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) e. SH | 
						
							| 69 | 64 68 | shincli |  |-  ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) e. SH | 
						
							| 70 | 61 69 | shsvsi |  |-  ( ( ( x -h f ) e. ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) /\ ( z -h f ) e. ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) | 
						
							| 71 | 50 70 | syl |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( ( x -h f ) -h ( z -h f ) ) e. ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) | 
						
							| 72 | 32 71 | eqeltrrd |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) | 
						
							| 73 | 13 72 | elind |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) |