Step |
Hyp |
Ref |
Expression |
1 |
|
5oalem3.1 |
|- A e. SH |
2 |
|
5oalem3.2 |
|- B e. SH |
3 |
|
5oalem3.3 |
|- C e. SH |
4 |
|
5oalem3.4 |
|- D e. SH |
5 |
|
5oalem3.5 |
|- F e. SH |
6 |
|
5oalem3.6 |
|- G e. SH |
7 |
|
eqtr3 |
|- ( ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) -> ( x +h y ) = ( z +h w ) ) |
8 |
1 2 3 4
|
5oalem2 |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( x -h z ) e. ( ( A +H C ) i^i ( B +H D ) ) ) |
9 |
7 8
|
sylan2 |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( A +H C ) i^i ( B +H D ) ) ) |
10 |
9
|
adantlr |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( A +H C ) i^i ( B +H D ) ) ) |
11 |
1 2 3 4 5 6
|
5oalem3 |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) |
12 |
10 11
|
elind |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) ) |