| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 5oalem3.1 |  |-  A e. SH | 
						
							| 2 |  | 5oalem3.2 |  |-  B e. SH | 
						
							| 3 |  | 5oalem3.3 |  |-  C e. SH | 
						
							| 4 |  | 5oalem3.4 |  |-  D e. SH | 
						
							| 5 |  | 5oalem3.5 |  |-  F e. SH | 
						
							| 6 |  | 5oalem3.6 |  |-  G e. SH | 
						
							| 7 |  | eqtr3 |  |-  ( ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) -> ( x +h y ) = ( z +h w ) ) | 
						
							| 8 | 1 2 3 4 | 5oalem2 |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( x -h z ) e. ( ( A +H C ) i^i ( B +H D ) ) ) | 
						
							| 9 | 7 8 | sylan2 |  |-  ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( A +H C ) i^i ( B +H D ) ) ) | 
						
							| 10 | 9 | adantlr |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( A +H C ) i^i ( B +H D ) ) ) | 
						
							| 11 | 1 2 3 4 5 6 | 5oalem3 |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) | 
						
							| 12 | 10 11 | elind |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( f e. F /\ g e. G ) ) /\ ( ( x +h y ) = ( f +h g ) /\ ( z +h w ) = ( f +h g ) ) ) -> ( x -h z ) e. ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H F ) i^i ( B +H G ) ) +H ( ( C +H F ) i^i ( D +H G ) ) ) ) ) |