Metamath Proof Explorer


Theorem 5oalem4

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem3.1 𝐴S
5oalem3.2 𝐵S
5oalem3.3 𝐶S
5oalem3.4 𝐷S
5oalem3.5 𝐹S
5oalem3.6 𝐺S
Assertion 5oalem4 ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑧𝐶𝑤𝐷 ) ) ∧ ( 𝑓𝐹𝑔𝐺 ) ) ∧ ( ( 𝑥 + 𝑦 ) = ( 𝑓 + 𝑔 ) ∧ ( 𝑧 + 𝑤 ) = ( 𝑓 + 𝑔 ) ) ) → ( 𝑥 𝑧 ) ∈ ( ( ( 𝐴 + 𝐶 ) ∩ ( 𝐵 + 𝐷 ) ) ∩ ( ( ( 𝐴 + 𝐹 ) ∩ ( 𝐵 + 𝐺 ) ) + ( ( 𝐶 + 𝐹 ) ∩ ( 𝐷 + 𝐺 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 5oalem3.1 𝐴S
2 5oalem3.2 𝐵S
3 5oalem3.3 𝐶S
4 5oalem3.4 𝐷S
5 5oalem3.5 𝐹S
6 5oalem3.6 𝐺S
7 eqtr3 ( ( ( 𝑥 + 𝑦 ) = ( 𝑓 + 𝑔 ) ∧ ( 𝑧 + 𝑤 ) = ( 𝑓 + 𝑔 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑧 + 𝑤 ) )
8 1 2 3 4 5oalem2 ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑧𝐶𝑤𝐷 ) ) ∧ ( 𝑥 + 𝑦 ) = ( 𝑧 + 𝑤 ) ) → ( 𝑥 𝑧 ) ∈ ( ( 𝐴 + 𝐶 ) ∩ ( 𝐵 + 𝐷 ) ) )
9 7 8 sylan2 ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑧𝐶𝑤𝐷 ) ) ∧ ( ( 𝑥 + 𝑦 ) = ( 𝑓 + 𝑔 ) ∧ ( 𝑧 + 𝑤 ) = ( 𝑓 + 𝑔 ) ) ) → ( 𝑥 𝑧 ) ∈ ( ( 𝐴 + 𝐶 ) ∩ ( 𝐵 + 𝐷 ) ) )
10 9 adantlr ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑧𝐶𝑤𝐷 ) ) ∧ ( 𝑓𝐹𝑔𝐺 ) ) ∧ ( ( 𝑥 + 𝑦 ) = ( 𝑓 + 𝑔 ) ∧ ( 𝑧 + 𝑤 ) = ( 𝑓 + 𝑔 ) ) ) → ( 𝑥 𝑧 ) ∈ ( ( 𝐴 + 𝐶 ) ∩ ( 𝐵 + 𝐷 ) ) )
11 1 2 3 4 5 6 5oalem3 ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑧𝐶𝑤𝐷 ) ) ∧ ( 𝑓𝐹𝑔𝐺 ) ) ∧ ( ( 𝑥 + 𝑦 ) = ( 𝑓 + 𝑔 ) ∧ ( 𝑧 + 𝑤 ) = ( 𝑓 + 𝑔 ) ) ) → ( 𝑥 𝑧 ) ∈ ( ( ( 𝐴 + 𝐹 ) ∩ ( 𝐵 + 𝐺 ) ) + ( ( 𝐶 + 𝐹 ) ∩ ( 𝐷 + 𝐺 ) ) ) )
12 10 11 elind ( ( ( ( ( 𝑥𝐴𝑦𝐵 ) ∧ ( 𝑧𝐶𝑤𝐷 ) ) ∧ ( 𝑓𝐹𝑔𝐺 ) ) ∧ ( ( 𝑥 + 𝑦 ) = ( 𝑓 + 𝑔 ) ∧ ( 𝑧 + 𝑤 ) = ( 𝑓 + 𝑔 ) ) ) → ( 𝑥 𝑧 ) ∈ ( ( ( 𝐴 + 𝐶 ) ∩ ( 𝐵 + 𝐷 ) ) ∩ ( ( ( 𝐴 + 𝐹 ) ∩ ( 𝐵 + 𝐺 ) ) + ( ( 𝐶 + 𝐹 ) ∩ ( 𝐷 + 𝐺 ) ) ) ) )