| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 5oalem3.1 | ⊢ 𝐴  ∈   Sℋ | 
						
							| 2 |  | 5oalem3.2 | ⊢ 𝐵  ∈   Sℋ | 
						
							| 3 |  | 5oalem3.3 | ⊢ 𝐶  ∈   Sℋ | 
						
							| 4 |  | 5oalem3.4 | ⊢ 𝐷  ∈   Sℋ | 
						
							| 5 |  | 5oalem3.5 | ⊢ 𝐹  ∈   Sℋ | 
						
							| 6 |  | 5oalem3.6 | ⊢ 𝐺  ∈   Sℋ | 
						
							| 7 |  | eqtr3 | ⊢ ( ( ( 𝑥  +ℎ  𝑦 )  =  ( 𝑓  +ℎ  𝑔 )  ∧  ( 𝑧  +ℎ  𝑤 )  =  ( 𝑓  +ℎ  𝑔 ) )  →  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 ) ) | 
						
							| 8 | 1 2 3 4 | 5oalem2 | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐶  ∧  𝑤  ∈  𝐷 ) )  ∧  ( 𝑥  +ℎ  𝑦 )  =  ( 𝑧  +ℎ  𝑤 ) )  →  ( 𝑥  −ℎ  𝑧 )  ∈  ( ( 𝐴  +ℋ  𝐶 )  ∩  ( 𝐵  +ℋ  𝐷 ) ) ) | 
						
							| 9 | 7 8 | sylan2 | ⊢ ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐶  ∧  𝑤  ∈  𝐷 ) )  ∧  ( ( 𝑥  +ℎ  𝑦 )  =  ( 𝑓  +ℎ  𝑔 )  ∧  ( 𝑧  +ℎ  𝑤 )  =  ( 𝑓  +ℎ  𝑔 ) ) )  →  ( 𝑥  −ℎ  𝑧 )  ∈  ( ( 𝐴  +ℋ  𝐶 )  ∩  ( 𝐵  +ℋ  𝐷 ) ) ) | 
						
							| 10 | 9 | adantlr | ⊢ ( ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐶  ∧  𝑤  ∈  𝐷 ) )  ∧  ( 𝑓  ∈  𝐹  ∧  𝑔  ∈  𝐺 ) )  ∧  ( ( 𝑥  +ℎ  𝑦 )  =  ( 𝑓  +ℎ  𝑔 )  ∧  ( 𝑧  +ℎ  𝑤 )  =  ( 𝑓  +ℎ  𝑔 ) ) )  →  ( 𝑥  −ℎ  𝑧 )  ∈  ( ( 𝐴  +ℋ  𝐶 )  ∩  ( 𝐵  +ℋ  𝐷 ) ) ) | 
						
							| 11 | 1 2 3 4 5 6 | 5oalem3 | ⊢ ( ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐶  ∧  𝑤  ∈  𝐷 ) )  ∧  ( 𝑓  ∈  𝐹  ∧  𝑔  ∈  𝐺 ) )  ∧  ( ( 𝑥  +ℎ  𝑦 )  =  ( 𝑓  +ℎ  𝑔 )  ∧  ( 𝑧  +ℎ  𝑤 )  =  ( 𝑓  +ℎ  𝑔 ) ) )  →  ( 𝑥  −ℎ  𝑧 )  ∈  ( ( ( 𝐴  +ℋ  𝐹 )  ∩  ( 𝐵  +ℋ  𝐺 ) )  +ℋ  ( ( 𝐶  +ℋ  𝐹 )  ∩  ( 𝐷  +ℋ  𝐺 ) ) ) ) | 
						
							| 12 | 10 11 | elind | ⊢ ( ( ( ( ( 𝑥  ∈  𝐴  ∧  𝑦  ∈  𝐵 )  ∧  ( 𝑧  ∈  𝐶  ∧  𝑤  ∈  𝐷 ) )  ∧  ( 𝑓  ∈  𝐹  ∧  𝑔  ∈  𝐺 ) )  ∧  ( ( 𝑥  +ℎ  𝑦 )  =  ( 𝑓  +ℎ  𝑔 )  ∧  ( 𝑧  +ℎ  𝑤 )  =  ( 𝑓  +ℎ  𝑔 ) ) )  →  ( 𝑥  −ℎ  𝑧 )  ∈  ( ( ( 𝐴  +ℋ  𝐶 )  ∩  ( 𝐵  +ℋ  𝐷 ) )  ∩  ( ( ( 𝐴  +ℋ  𝐹 )  ∩  ( 𝐵  +ℋ  𝐺 ) )  +ℋ  ( ( 𝐶  +ℋ  𝐹 )  ∩  ( 𝐷  +ℋ  𝐺 ) ) ) ) ) |