Step |
Hyp |
Ref |
Expression |
1 |
|
5oalem2.1 |
⊢ 𝐴 ∈ Sℋ |
2 |
|
5oalem2.2 |
⊢ 𝐵 ∈ Sℋ |
3 |
|
5oalem2.3 |
⊢ 𝐶 ∈ Sℋ |
4 |
|
5oalem2.4 |
⊢ 𝐷 ∈ Sℋ |
5 |
1 3
|
shsvsi |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑧 ∈ 𝐶 ) → ( 𝑥 −ℎ 𝑧 ) ∈ ( 𝐴 +ℋ 𝐶 ) ) |
6 |
5
|
ad2ant2r |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑥 −ℎ 𝑧 ) ∈ ( 𝐴 +ℋ 𝐶 ) ) |
7 |
6
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) ∧ ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( 𝑥 −ℎ 𝑧 ) ∈ ( 𝐴 +ℋ 𝐶 ) ) |
8 |
4 2
|
shsvsi |
⊢ ( ( 𝑤 ∈ 𝐷 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑤 −ℎ 𝑦 ) ∈ ( 𝐷 +ℋ 𝐵 ) ) |
9 |
8
|
ancoms |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) → ( 𝑤 −ℎ 𝑦 ) ∈ ( 𝐷 +ℋ 𝐵 ) ) |
10 |
2 4
|
shscomi |
⊢ ( 𝐵 +ℋ 𝐷 ) = ( 𝐷 +ℋ 𝐵 ) |
11 |
9 10
|
eleqtrrdi |
⊢ ( ( 𝑦 ∈ 𝐵 ∧ 𝑤 ∈ 𝐷 ) → ( 𝑤 −ℎ 𝑦 ) ∈ ( 𝐵 +ℋ 𝐷 ) ) |
12 |
11
|
ad2ant2l |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) → ( 𝑤 −ℎ 𝑦 ) ∈ ( 𝐵 +ℋ 𝐷 ) ) |
13 |
12
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) ∧ ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( 𝑤 −ℎ 𝑦 ) ∈ ( 𝐵 +ℋ 𝐷 ) ) |
14 |
1
|
sheli |
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ℋ ) |
15 |
2
|
sheli |
⊢ ( 𝑦 ∈ 𝐵 → 𝑦 ∈ ℋ ) |
16 |
14 15
|
anim12i |
⊢ ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) → ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
17 |
3
|
sheli |
⊢ ( 𝑧 ∈ 𝐶 → 𝑧 ∈ ℋ ) |
18 |
4
|
sheli |
⊢ ( 𝑤 ∈ 𝐷 → 𝑤 ∈ ℋ ) |
19 |
17 18
|
anim12i |
⊢ ( ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) → ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) |
20 |
16 19
|
anim12i |
⊢ ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) → ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) ) |
21 |
|
oveq1 |
⊢ ( ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) → ( ( 𝑥 +ℎ 𝑦 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( ( 𝑧 +ℎ 𝑤 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) ) |
22 |
21
|
adantl |
⊢ ( ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) ∧ ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( ( 𝑥 +ℎ 𝑦 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( ( 𝑧 +ℎ 𝑤 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) ) |
23 |
|
simpr |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → 𝑦 ∈ ℋ ) |
24 |
23
|
anim2i |
⊢ ( ( 𝑧 ∈ ℋ ∧ ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
25 |
24
|
ancoms |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
26 |
|
hvsub4 |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑥 +ℎ 𝑦 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( ( 𝑥 −ℎ 𝑧 ) +ℎ ( 𝑦 −ℎ 𝑦 ) ) ) |
27 |
25 26
|
syldan |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 +ℎ 𝑦 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( ( 𝑥 −ℎ 𝑧 ) +ℎ ( 𝑦 −ℎ 𝑦 ) ) ) |
28 |
|
hvsubid |
⊢ ( 𝑦 ∈ ℋ → ( 𝑦 −ℎ 𝑦 ) = 0ℎ ) |
29 |
28
|
oveq2d |
⊢ ( 𝑦 ∈ ℋ → ( ( 𝑥 −ℎ 𝑧 ) +ℎ ( 𝑦 −ℎ 𝑦 ) ) = ( ( 𝑥 −ℎ 𝑧 ) +ℎ 0ℎ ) ) |
30 |
29
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 −ℎ 𝑧 ) +ℎ ( 𝑦 −ℎ 𝑦 ) ) = ( ( 𝑥 −ℎ 𝑧 ) +ℎ 0ℎ ) ) |
31 |
|
hvsubcl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( 𝑥 −ℎ 𝑧 ) ∈ ℋ ) |
32 |
|
ax-hvaddid |
⊢ ( ( 𝑥 −ℎ 𝑧 ) ∈ ℋ → ( ( 𝑥 −ℎ 𝑧 ) +ℎ 0ℎ ) = ( 𝑥 −ℎ 𝑧 ) ) |
33 |
31 32
|
syl |
⊢ ( ( 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 −ℎ 𝑧 ) +ℎ 0ℎ ) = ( 𝑥 −ℎ 𝑧 ) ) |
34 |
33
|
adantlr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 −ℎ 𝑧 ) +ℎ 0ℎ ) = ( 𝑥 −ℎ 𝑧 ) ) |
35 |
27 30 34
|
3eqtrd |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ 𝑧 ∈ ℋ ) → ( ( 𝑥 +ℎ 𝑦 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( 𝑥 −ℎ 𝑧 ) ) |
36 |
35
|
adantrr |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑥 +ℎ 𝑦 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( 𝑥 −ℎ 𝑧 ) ) |
37 |
36
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) ∧ ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( ( 𝑥 +ℎ 𝑦 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( 𝑥 −ℎ 𝑧 ) ) |
38 |
|
simpr |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) |
39 |
|
simpl |
⊢ ( ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → 𝑧 ∈ ℋ ) |
40 |
39
|
anim1i |
⊢ ( ( ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ∧ 𝑦 ∈ ℋ ) → ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
41 |
40
|
ancoms |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) |
42 |
|
hvsub4 |
⊢ ( ( ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ) → ( ( 𝑧 +ℎ 𝑤 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( ( 𝑧 −ℎ 𝑧 ) +ℎ ( 𝑤 −ℎ 𝑦 ) ) ) |
43 |
38 41 42
|
syl2anc |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑧 +ℎ 𝑤 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( ( 𝑧 −ℎ 𝑧 ) +ℎ ( 𝑤 −ℎ 𝑦 ) ) ) |
44 |
|
hvsubid |
⊢ ( 𝑧 ∈ ℋ → ( 𝑧 −ℎ 𝑧 ) = 0ℎ ) |
45 |
44
|
oveq1d |
⊢ ( 𝑧 ∈ ℋ → ( ( 𝑧 −ℎ 𝑧 ) +ℎ ( 𝑤 −ℎ 𝑦 ) ) = ( 0ℎ +ℎ ( 𝑤 −ℎ 𝑦 ) ) ) |
46 |
45
|
ad2antrl |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑧 −ℎ 𝑧 ) +ℎ ( 𝑤 −ℎ 𝑦 ) ) = ( 0ℎ +ℎ ( 𝑤 −ℎ 𝑦 ) ) ) |
47 |
|
hvsubcl |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 𝑤 −ℎ 𝑦 ) ∈ ℋ ) |
48 |
|
hvaddid2 |
⊢ ( ( 𝑤 −ℎ 𝑦 ) ∈ ℋ → ( 0ℎ +ℎ ( 𝑤 −ℎ 𝑦 ) ) = ( 𝑤 −ℎ 𝑦 ) ) |
49 |
47 48
|
syl |
⊢ ( ( 𝑤 ∈ ℋ ∧ 𝑦 ∈ ℋ ) → ( 0ℎ +ℎ ( 𝑤 −ℎ 𝑦 ) ) = ( 𝑤 −ℎ 𝑦 ) ) |
50 |
49
|
ancoms |
⊢ ( ( 𝑦 ∈ ℋ ∧ 𝑤 ∈ ℋ ) → ( 0ℎ +ℎ ( 𝑤 −ℎ 𝑦 ) ) = ( 𝑤 −ℎ 𝑦 ) ) |
51 |
50
|
adantrl |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( 0ℎ +ℎ ( 𝑤 −ℎ 𝑦 ) ) = ( 𝑤 −ℎ 𝑦 ) ) |
52 |
43 46 51
|
3eqtrd |
⊢ ( ( 𝑦 ∈ ℋ ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑧 +ℎ 𝑤 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( 𝑤 −ℎ 𝑦 ) ) |
53 |
52
|
adantll |
⊢ ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) → ( ( 𝑧 +ℎ 𝑤 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( 𝑤 −ℎ 𝑦 ) ) |
54 |
53
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) ∧ ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( ( 𝑧 +ℎ 𝑤 ) −ℎ ( 𝑧 +ℎ 𝑦 ) ) = ( 𝑤 −ℎ 𝑦 ) ) |
55 |
22 37 54
|
3eqtr3d |
⊢ ( ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) ∧ ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( 𝑥 −ℎ 𝑧 ) = ( 𝑤 −ℎ 𝑦 ) ) |
56 |
55
|
eleq1d |
⊢ ( ( ( ( 𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ ) ∧ ( 𝑧 ∈ ℋ ∧ 𝑤 ∈ ℋ ) ) ∧ ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( ( 𝑥 −ℎ 𝑧 ) ∈ ( 𝐵 +ℋ 𝐷 ) ↔ ( 𝑤 −ℎ 𝑦 ) ∈ ( 𝐵 +ℋ 𝐷 ) ) ) |
57 |
20 56
|
sylan |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) ∧ ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( ( 𝑥 −ℎ 𝑧 ) ∈ ( 𝐵 +ℋ 𝐷 ) ↔ ( 𝑤 −ℎ 𝑦 ) ∈ ( 𝐵 +ℋ 𝐷 ) ) ) |
58 |
13 57
|
mpbird |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) ∧ ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( 𝑥 −ℎ 𝑧 ) ∈ ( 𝐵 +ℋ 𝐷 ) ) |
59 |
7 58
|
elind |
⊢ ( ( ( ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ) ∧ ( 𝑧 ∈ 𝐶 ∧ 𝑤 ∈ 𝐷 ) ) ∧ ( 𝑥 +ℎ 𝑦 ) = ( 𝑧 +ℎ 𝑤 ) ) → ( 𝑥 −ℎ 𝑧 ) ∈ ( ( 𝐴 +ℋ 𝐶 ) ∩ ( 𝐵 +ℋ 𝐷 ) ) ) |