Step |
Hyp |
Ref |
Expression |
1 |
|
5oalem2.1 |
|- A e. SH |
2 |
|
5oalem2.2 |
|- B e. SH |
3 |
|
5oalem2.3 |
|- C e. SH |
4 |
|
5oalem2.4 |
|- D e. SH |
5 |
1 3
|
shsvsi |
|- ( ( x e. A /\ z e. C ) -> ( x -h z ) e. ( A +H C ) ) |
6 |
5
|
ad2ant2r |
|- ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) -> ( x -h z ) e. ( A +H C ) ) |
7 |
6
|
adantr |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( x -h z ) e. ( A +H C ) ) |
8 |
4 2
|
shsvsi |
|- ( ( w e. D /\ y e. B ) -> ( w -h y ) e. ( D +H B ) ) |
9 |
8
|
ancoms |
|- ( ( y e. B /\ w e. D ) -> ( w -h y ) e. ( D +H B ) ) |
10 |
2 4
|
shscomi |
|- ( B +H D ) = ( D +H B ) |
11 |
9 10
|
eleqtrrdi |
|- ( ( y e. B /\ w e. D ) -> ( w -h y ) e. ( B +H D ) ) |
12 |
11
|
ad2ant2l |
|- ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) -> ( w -h y ) e. ( B +H D ) ) |
13 |
12
|
adantr |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( w -h y ) e. ( B +H D ) ) |
14 |
1
|
sheli |
|- ( x e. A -> x e. ~H ) |
15 |
2
|
sheli |
|- ( y e. B -> y e. ~H ) |
16 |
14 15
|
anim12i |
|- ( ( x e. A /\ y e. B ) -> ( x e. ~H /\ y e. ~H ) ) |
17 |
3
|
sheli |
|- ( z e. C -> z e. ~H ) |
18 |
4
|
sheli |
|- ( w e. D -> w e. ~H ) |
19 |
17 18
|
anim12i |
|- ( ( z e. C /\ w e. D ) -> ( z e. ~H /\ w e. ~H ) ) |
20 |
16 19
|
anim12i |
|- ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) -> ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ w e. ~H ) ) ) |
21 |
|
oveq1 |
|- ( ( x +h y ) = ( z +h w ) -> ( ( x +h y ) -h ( z +h y ) ) = ( ( z +h w ) -h ( z +h y ) ) ) |
22 |
21
|
adantl |
|- ( ( ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ w e. ~H ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( ( x +h y ) -h ( z +h y ) ) = ( ( z +h w ) -h ( z +h y ) ) ) |
23 |
|
simpr |
|- ( ( x e. ~H /\ y e. ~H ) -> y e. ~H ) |
24 |
23
|
anim2i |
|- ( ( z e. ~H /\ ( x e. ~H /\ y e. ~H ) ) -> ( z e. ~H /\ y e. ~H ) ) |
25 |
24
|
ancoms |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( z e. ~H /\ y e. ~H ) ) |
26 |
|
hvsub4 |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ y e. ~H ) ) -> ( ( x +h y ) -h ( z +h y ) ) = ( ( x -h z ) +h ( y -h y ) ) ) |
27 |
25 26
|
syldan |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( x +h y ) -h ( z +h y ) ) = ( ( x -h z ) +h ( y -h y ) ) ) |
28 |
|
hvsubid |
|- ( y e. ~H -> ( y -h y ) = 0h ) |
29 |
28
|
oveq2d |
|- ( y e. ~H -> ( ( x -h z ) +h ( y -h y ) ) = ( ( x -h z ) +h 0h ) ) |
30 |
29
|
ad2antlr |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( x -h z ) +h ( y -h y ) ) = ( ( x -h z ) +h 0h ) ) |
31 |
|
hvsubcl |
|- ( ( x e. ~H /\ z e. ~H ) -> ( x -h z ) e. ~H ) |
32 |
|
ax-hvaddid |
|- ( ( x -h z ) e. ~H -> ( ( x -h z ) +h 0h ) = ( x -h z ) ) |
33 |
31 32
|
syl |
|- ( ( x e. ~H /\ z e. ~H ) -> ( ( x -h z ) +h 0h ) = ( x -h z ) ) |
34 |
33
|
adantlr |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( x -h z ) +h 0h ) = ( x -h z ) ) |
35 |
27 30 34
|
3eqtrd |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ z e. ~H ) -> ( ( x +h y ) -h ( z +h y ) ) = ( x -h z ) ) |
36 |
35
|
adantrr |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ w e. ~H ) ) -> ( ( x +h y ) -h ( z +h y ) ) = ( x -h z ) ) |
37 |
36
|
adantr |
|- ( ( ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ w e. ~H ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( ( x +h y ) -h ( z +h y ) ) = ( x -h z ) ) |
38 |
|
simpr |
|- ( ( y e. ~H /\ ( z e. ~H /\ w e. ~H ) ) -> ( z e. ~H /\ w e. ~H ) ) |
39 |
|
simpl |
|- ( ( z e. ~H /\ w e. ~H ) -> z e. ~H ) |
40 |
39
|
anim1i |
|- ( ( ( z e. ~H /\ w e. ~H ) /\ y e. ~H ) -> ( z e. ~H /\ y e. ~H ) ) |
41 |
40
|
ancoms |
|- ( ( y e. ~H /\ ( z e. ~H /\ w e. ~H ) ) -> ( z e. ~H /\ y e. ~H ) ) |
42 |
|
hvsub4 |
|- ( ( ( z e. ~H /\ w e. ~H ) /\ ( z e. ~H /\ y e. ~H ) ) -> ( ( z +h w ) -h ( z +h y ) ) = ( ( z -h z ) +h ( w -h y ) ) ) |
43 |
38 41 42
|
syl2anc |
|- ( ( y e. ~H /\ ( z e. ~H /\ w e. ~H ) ) -> ( ( z +h w ) -h ( z +h y ) ) = ( ( z -h z ) +h ( w -h y ) ) ) |
44 |
|
hvsubid |
|- ( z e. ~H -> ( z -h z ) = 0h ) |
45 |
44
|
oveq1d |
|- ( z e. ~H -> ( ( z -h z ) +h ( w -h y ) ) = ( 0h +h ( w -h y ) ) ) |
46 |
45
|
ad2antrl |
|- ( ( y e. ~H /\ ( z e. ~H /\ w e. ~H ) ) -> ( ( z -h z ) +h ( w -h y ) ) = ( 0h +h ( w -h y ) ) ) |
47 |
|
hvsubcl |
|- ( ( w e. ~H /\ y e. ~H ) -> ( w -h y ) e. ~H ) |
48 |
|
hvaddid2 |
|- ( ( w -h y ) e. ~H -> ( 0h +h ( w -h y ) ) = ( w -h y ) ) |
49 |
47 48
|
syl |
|- ( ( w e. ~H /\ y e. ~H ) -> ( 0h +h ( w -h y ) ) = ( w -h y ) ) |
50 |
49
|
ancoms |
|- ( ( y e. ~H /\ w e. ~H ) -> ( 0h +h ( w -h y ) ) = ( w -h y ) ) |
51 |
50
|
adantrl |
|- ( ( y e. ~H /\ ( z e. ~H /\ w e. ~H ) ) -> ( 0h +h ( w -h y ) ) = ( w -h y ) ) |
52 |
43 46 51
|
3eqtrd |
|- ( ( y e. ~H /\ ( z e. ~H /\ w e. ~H ) ) -> ( ( z +h w ) -h ( z +h y ) ) = ( w -h y ) ) |
53 |
52
|
adantll |
|- ( ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ w e. ~H ) ) -> ( ( z +h w ) -h ( z +h y ) ) = ( w -h y ) ) |
54 |
53
|
adantr |
|- ( ( ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ w e. ~H ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( ( z +h w ) -h ( z +h y ) ) = ( w -h y ) ) |
55 |
22 37 54
|
3eqtr3d |
|- ( ( ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ w e. ~H ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( x -h z ) = ( w -h y ) ) |
56 |
55
|
eleq1d |
|- ( ( ( ( x e. ~H /\ y e. ~H ) /\ ( z e. ~H /\ w e. ~H ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( ( x -h z ) e. ( B +H D ) <-> ( w -h y ) e. ( B +H D ) ) ) |
57 |
20 56
|
sylan |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( ( x -h z ) e. ( B +H D ) <-> ( w -h y ) e. ( B +H D ) ) ) |
58 |
13 57
|
mpbird |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( x -h z ) e. ( B +H D ) ) |
59 |
7 58
|
elind |
|- ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( x +h y ) = ( z +h w ) ) -> ( x -h z ) e. ( ( A +H C ) i^i ( B +H D ) ) ) |