Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 5oalem2.1 | |
|
5oalem2.2 | |
||
5oalem2.3 | |
||
5oalem2.4 | |
||
Assertion | 5oalem2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5oalem2.1 | |
|
2 | 5oalem2.2 | |
|
3 | 5oalem2.3 | |
|
4 | 5oalem2.4 | |
|
5 | 1 3 | shsvsi | |
6 | 5 | ad2ant2r | |
7 | 6 | adantr | |
8 | 4 2 | shsvsi | |
9 | 8 | ancoms | |
10 | 2 4 | shscomi | |
11 | 9 10 | eleqtrrdi | |
12 | 11 | ad2ant2l | |
13 | 12 | adantr | |
14 | 1 | sheli | |
15 | 2 | sheli | |
16 | 14 15 | anim12i | |
17 | 3 | sheli | |
18 | 4 | sheli | |
19 | 17 18 | anim12i | |
20 | 16 19 | anim12i | |
21 | oveq1 | |
|
22 | 21 | adantl | |
23 | simpr | |
|
24 | 23 | anim2i | |
25 | 24 | ancoms | |
26 | hvsub4 | |
|
27 | 25 26 | syldan | |
28 | hvsubid | |
|
29 | 28 | oveq2d | |
30 | 29 | ad2antlr | |
31 | hvsubcl | |
|
32 | ax-hvaddid | |
|
33 | 31 32 | syl | |
34 | 33 | adantlr | |
35 | 27 30 34 | 3eqtrd | |
36 | 35 | adantrr | |
37 | 36 | adantr | |
38 | simpr | |
|
39 | simpl | |
|
40 | 39 | anim1i | |
41 | 40 | ancoms | |
42 | hvsub4 | |
|
43 | 38 41 42 | syl2anc | |
44 | hvsubid | |
|
45 | 44 | oveq1d | |
46 | 45 | ad2antrl | |
47 | hvsubcl | |
|
48 | hvaddlid | |
|
49 | 47 48 | syl | |
50 | 49 | ancoms | |
51 | 50 | adantrl | |
52 | 43 46 51 | 3eqtrd | |
53 | 52 | adantll | |
54 | 53 | adantr | |
55 | 22 37 54 | 3eqtr3d | |
56 | 55 | eleq1d | |
57 | 20 56 | sylan | |
58 | 13 57 | mpbird | |
59 | 7 58 | elind | |