Metamath Proof Explorer


Theorem 5oalem2

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 2-Apr-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem2.1 AS
5oalem2.2 BS
5oalem2.3 CS
5oalem2.4 DS
Assertion 5oalem2 xAyBzCwDx+y=z+wx-zA+CB+D

Proof

Step Hyp Ref Expression
1 5oalem2.1 AS
2 5oalem2.2 BS
3 5oalem2.3 CS
4 5oalem2.4 DS
5 1 3 shsvsi xAzCx-zA+C
6 5 ad2ant2r xAyBzCwDx-zA+C
7 6 adantr xAyBzCwDx+y=z+wx-zA+C
8 4 2 shsvsi wDyBw-yD+B
9 8 ancoms yBwDw-yD+B
10 2 4 shscomi B+D=D+B
11 9 10 eleqtrrdi yBwDw-yB+D
12 11 ad2ant2l xAyBzCwDw-yB+D
13 12 adantr xAyBzCwDx+y=z+ww-yB+D
14 1 sheli xAx
15 2 sheli yBy
16 14 15 anim12i xAyBxy
17 3 sheli zCz
18 4 sheli wDw
19 17 18 anim12i zCwDzw
20 16 19 anim12i xAyBzCwDxyzw
21 oveq1 x+y=z+wx+y-z+y=z+w-z+y
22 21 adantl xyzwx+y=z+wx+y-z+y=z+w-z+y
23 simpr xyy
24 23 anim2i zxyzy
25 24 ancoms xyzzy
26 hvsub4 xyzyx+y-z+y=x-z+y-y
27 25 26 syldan xyzx+y-z+y=x-z+y-y
28 hvsubid yy-y=0
29 28 oveq2d yx-z+y-y=x-z+0
30 29 ad2antlr xyzx-z+y-y=x-z+0
31 hvsubcl xzx-z
32 ax-hvaddid x-zx-z+0=x-z
33 31 32 syl xzx-z+0=x-z
34 33 adantlr xyzx-z+0=x-z
35 27 30 34 3eqtrd xyzx+y-z+y=x-z
36 35 adantrr xyzwx+y-z+y=x-z
37 36 adantr xyzwx+y=z+wx+y-z+y=x-z
38 simpr yzwzw
39 simpl zwz
40 39 anim1i zwyzy
41 40 ancoms yzwzy
42 hvsub4 zwzyz+w-z+y=z-z+w-y
43 38 41 42 syl2anc yzwz+w-z+y=z-z+w-y
44 hvsubid zz-z=0
45 44 oveq1d zz-z+w-y=0+w-y
46 45 ad2antrl yzwz-z+w-y=0+w-y
47 hvsubcl wyw-y
48 hvaddlid w-y0+w-y=w-y
49 47 48 syl wy0+w-y=w-y
50 49 ancoms yw0+w-y=w-y
51 50 adantrl yzw0+w-y=w-y
52 43 46 51 3eqtrd yzwz+w-z+y=w-y
53 52 adantll xyzwz+w-z+y=w-y
54 53 adantr xyzwx+y=z+wz+w-z+y=w-y
55 22 37 54 3eqtr3d xyzwx+y=z+wx-z=w-y
56 55 eleq1d xyzwx+y=z+wx-zB+Dw-yB+D
57 20 56 sylan xAyBzCwDx+y=z+wx-zB+Dw-yB+D
58 13 57 mpbird xAyBzCwDx+y=z+wx-zB+D
59 7 58 elind xAyBzCwDx+y=z+wx-zA+CB+D