Step |
Hyp |
Ref |
Expression |
1 |
|
5oalem5.1 |
|- A e. SH |
2 |
|
5oalem5.2 |
|- B e. SH |
3 |
|
5oalem5.3 |
|- C e. SH |
4 |
|
5oalem5.4 |
|- D e. SH |
5 |
|
5oalem5.5 |
|- F e. SH |
6 |
|
5oalem5.6 |
|- G e. SH |
7 |
|
5oalem5.7 |
|- R e. SH |
8 |
|
5oalem5.8 |
|- S e. SH |
9 |
|
an4 |
|- ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) <-> ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( h = ( x +h y ) /\ h = ( z +h w ) ) ) ) |
10 |
|
an4 |
|- ( ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) <-> ( ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) ) |
11 |
|
eqeq1 |
|- ( h = ( x +h y ) -> ( h = ( v +h u ) <-> ( x +h y ) = ( v +h u ) ) ) |
12 |
11
|
biimpcd |
|- ( h = ( v +h u ) -> ( h = ( x +h y ) -> ( x +h y ) = ( v +h u ) ) ) |
13 |
|
eqeq1 |
|- ( h = ( z +h w ) -> ( h = ( v +h u ) <-> ( z +h w ) = ( v +h u ) ) ) |
14 |
13
|
biimpcd |
|- ( h = ( v +h u ) -> ( h = ( z +h w ) -> ( z +h w ) = ( v +h u ) ) ) |
15 |
12 14
|
anim12d |
|- ( h = ( v +h u ) -> ( ( h = ( x +h y ) /\ h = ( z +h w ) ) -> ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) ) ) |
16 |
|
eqeq1 |
|- ( h = ( f +h g ) -> ( h = ( v +h u ) <-> ( f +h g ) = ( v +h u ) ) ) |
17 |
16
|
biimpcd |
|- ( h = ( v +h u ) -> ( h = ( f +h g ) -> ( f +h g ) = ( v +h u ) ) ) |
18 |
15 17
|
anim12d |
|- ( h = ( v +h u ) -> ( ( ( h = ( x +h y ) /\ h = ( z +h w ) ) /\ h = ( f +h g ) ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) |
19 |
18
|
expdcom |
|- ( ( h = ( x +h y ) /\ h = ( z +h w ) ) -> ( h = ( f +h g ) -> ( h = ( v +h u ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) ) |
20 |
19
|
imp32 |
|- ( ( ( h = ( x +h y ) /\ h = ( z +h w ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) |
21 |
20
|
anim2i |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( h = ( x +h y ) /\ h = ( z +h w ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) |
22 |
21
|
an4s |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( h = ( x +h y ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) |
23 |
9 10 22
|
syl2anb |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) |
24 |
1 2 3 4 5 6 7 8
|
5oalem5 |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) |
25 |
23 24
|
syl |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) |
26 |
1 3
|
shscli |
|- ( A +H C ) e. SH |
27 |
2 4
|
shscli |
|- ( B +H D ) e. SH |
28 |
26 27
|
shincli |
|- ( ( A +H C ) i^i ( B +H D ) ) e. SH |
29 |
1 7
|
shscli |
|- ( A +H R ) e. SH |
30 |
2 8
|
shscli |
|- ( B +H S ) e. SH |
31 |
29 30
|
shincli |
|- ( ( A +H R ) i^i ( B +H S ) ) e. SH |
32 |
3 7
|
shscli |
|- ( C +H R ) e. SH |
33 |
4 8
|
shscli |
|- ( D +H S ) e. SH |
34 |
32 33
|
shincli |
|- ( ( C +H R ) i^i ( D +H S ) ) e. SH |
35 |
31 34
|
shscli |
|- ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) e. SH |
36 |
28 35
|
shincli |
|- ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) e. SH |
37 |
1 5
|
shscli |
|- ( A +H F ) e. SH |
38 |
2 6
|
shscli |
|- ( B +H G ) e. SH |
39 |
37 38
|
shincli |
|- ( ( A +H F ) i^i ( B +H G ) ) e. SH |
40 |
5 7
|
shscli |
|- ( F +H R ) e. SH |
41 |
6 8
|
shscli |
|- ( G +H S ) e. SH |
42 |
40 41
|
shincli |
|- ( ( F +H R ) i^i ( G +H S ) ) e. SH |
43 |
31 42
|
shscli |
|- ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) e. SH |
44 |
39 43
|
shincli |
|- ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) e. SH |
45 |
3 5
|
shscli |
|- ( C +H F ) e. SH |
46 |
4 6
|
shscli |
|- ( D +H G ) e. SH |
47 |
45 46
|
shincli |
|- ( ( C +H F ) i^i ( D +H G ) ) e. SH |
48 |
34 42
|
shscli |
|- ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) e. SH |
49 |
47 48
|
shincli |
|- ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) e. SH |
50 |
44 49
|
shscli |
|- ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) e. SH |
51 |
36 50
|
shincli |
|- ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) e. SH |
52 |
1 2 3 51
|
5oalem1 |
|- ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) |
53 |
52
|
expr |
|- ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ z e. C ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) ) |
54 |
53
|
adantrr |
|- ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( z e. C /\ w e. D ) ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) ) |
55 |
54
|
adantrr |
|- ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) ) |
56 |
55
|
adantr |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) ) |
57 |
25 56
|
mpd |
|- ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) |