| Step | Hyp | Ref | Expression | 
						
							| 1 |  | 5oalem5.1 |  |-  A e. SH | 
						
							| 2 |  | 5oalem5.2 |  |-  B e. SH | 
						
							| 3 |  | 5oalem5.3 |  |-  C e. SH | 
						
							| 4 |  | 5oalem5.4 |  |-  D e. SH | 
						
							| 5 |  | 5oalem5.5 |  |-  F e. SH | 
						
							| 6 |  | 5oalem5.6 |  |-  G e. SH | 
						
							| 7 |  | 5oalem5.7 |  |-  R e. SH | 
						
							| 8 |  | 5oalem5.8 |  |-  S e. SH | 
						
							| 9 |  | an4 |  |-  ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) <-> ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( h = ( x +h y ) /\ h = ( z +h w ) ) ) ) | 
						
							| 10 |  | an4 |  |-  ( ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) <-> ( ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) ) | 
						
							| 11 |  | eqeq1 |  |-  ( h = ( x +h y ) -> ( h = ( v +h u ) <-> ( x +h y ) = ( v +h u ) ) ) | 
						
							| 12 | 11 | biimpcd |  |-  ( h = ( v +h u ) -> ( h = ( x +h y ) -> ( x +h y ) = ( v +h u ) ) ) | 
						
							| 13 |  | eqeq1 |  |-  ( h = ( z +h w ) -> ( h = ( v +h u ) <-> ( z +h w ) = ( v +h u ) ) ) | 
						
							| 14 | 13 | biimpcd |  |-  ( h = ( v +h u ) -> ( h = ( z +h w ) -> ( z +h w ) = ( v +h u ) ) ) | 
						
							| 15 | 12 14 | anim12d |  |-  ( h = ( v +h u ) -> ( ( h = ( x +h y ) /\ h = ( z +h w ) ) -> ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) ) ) | 
						
							| 16 |  | eqeq1 |  |-  ( h = ( f +h g ) -> ( h = ( v +h u ) <-> ( f +h g ) = ( v +h u ) ) ) | 
						
							| 17 | 16 | biimpcd |  |-  ( h = ( v +h u ) -> ( h = ( f +h g ) -> ( f +h g ) = ( v +h u ) ) ) | 
						
							| 18 | 15 17 | anim12d |  |-  ( h = ( v +h u ) -> ( ( ( h = ( x +h y ) /\ h = ( z +h w ) ) /\ h = ( f +h g ) ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) | 
						
							| 19 | 18 | expdcom |  |-  ( ( h = ( x +h y ) /\ h = ( z +h w ) ) -> ( h = ( f +h g ) -> ( h = ( v +h u ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) ) | 
						
							| 20 | 19 | imp32 |  |-  ( ( ( h = ( x +h y ) /\ h = ( z +h w ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) | 
						
							| 21 | 20 | anim2i |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( h = ( x +h y ) /\ h = ( z +h w ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) | 
						
							| 22 | 21 | an4s |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( h = ( x +h y ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) | 
						
							| 23 | 9 10 22 | syl2anb |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 | 5oalem5 |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) | 
						
							| 25 | 23 24 | syl |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) | 
						
							| 26 | 1 3 | shscli |  |-  ( A +H C ) e. SH | 
						
							| 27 | 2 4 | shscli |  |-  ( B +H D ) e. SH | 
						
							| 28 | 26 27 | shincli |  |-  ( ( A +H C ) i^i ( B +H D ) ) e. SH | 
						
							| 29 | 1 7 | shscli |  |-  ( A +H R ) e. SH | 
						
							| 30 | 2 8 | shscli |  |-  ( B +H S ) e. SH | 
						
							| 31 | 29 30 | shincli |  |-  ( ( A +H R ) i^i ( B +H S ) ) e. SH | 
						
							| 32 | 3 7 | shscli |  |-  ( C +H R ) e. SH | 
						
							| 33 | 4 8 | shscli |  |-  ( D +H S ) e. SH | 
						
							| 34 | 32 33 | shincli |  |-  ( ( C +H R ) i^i ( D +H S ) ) e. SH | 
						
							| 35 | 31 34 | shscli |  |-  ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) e. SH | 
						
							| 36 | 28 35 | shincli |  |-  ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) e. SH | 
						
							| 37 | 1 5 | shscli |  |-  ( A +H F ) e. SH | 
						
							| 38 | 2 6 | shscli |  |-  ( B +H G ) e. SH | 
						
							| 39 | 37 38 | shincli |  |-  ( ( A +H F ) i^i ( B +H G ) ) e. SH | 
						
							| 40 | 5 7 | shscli |  |-  ( F +H R ) e. SH | 
						
							| 41 | 6 8 | shscli |  |-  ( G +H S ) e. SH | 
						
							| 42 | 40 41 | shincli |  |-  ( ( F +H R ) i^i ( G +H S ) ) e. SH | 
						
							| 43 | 31 42 | shscli |  |-  ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) e. SH | 
						
							| 44 | 39 43 | shincli |  |-  ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) e. SH | 
						
							| 45 | 3 5 | shscli |  |-  ( C +H F ) e. SH | 
						
							| 46 | 4 6 | shscli |  |-  ( D +H G ) e. SH | 
						
							| 47 | 45 46 | shincli |  |-  ( ( C +H F ) i^i ( D +H G ) ) e. SH | 
						
							| 48 | 34 42 | shscli |  |-  ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) e. SH | 
						
							| 49 | 47 48 | shincli |  |-  ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) e. SH | 
						
							| 50 | 44 49 | shscli |  |-  ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) e. SH | 
						
							| 51 | 36 50 | shincli |  |-  ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) e. SH | 
						
							| 52 | 1 2 3 51 | 5oalem1 |  |-  ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) | 
						
							| 53 | 52 | expr |  |-  ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ z e. C ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) ) | 
						
							| 54 | 53 | adantrr |  |-  ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( z e. C /\ w e. D ) ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) ) | 
						
							| 55 | 54 | adantrr |  |-  ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) ) | 
						
							| 57 | 25 56 | mpd |  |-  ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) |