Metamath Proof Explorer


Theorem 5oalem6

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem5.1
|- A e. SH
5oalem5.2
|- B e. SH
5oalem5.3
|- C e. SH
5oalem5.4
|- D e. SH
5oalem5.5
|- F e. SH
5oalem5.6
|- G e. SH
5oalem5.7
|- R e. SH
5oalem5.8
|- S e. SH
Assertion 5oalem6
|- ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) )

Proof

Step Hyp Ref Expression
1 5oalem5.1
 |-  A e. SH
2 5oalem5.2
 |-  B e. SH
3 5oalem5.3
 |-  C e. SH
4 5oalem5.4
 |-  D e. SH
5 5oalem5.5
 |-  F e. SH
6 5oalem5.6
 |-  G e. SH
7 5oalem5.7
 |-  R e. SH
8 5oalem5.8
 |-  S e. SH
9 an4
 |-  ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) <-> ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( h = ( x +h y ) /\ h = ( z +h w ) ) ) )
10 an4
 |-  ( ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) <-> ( ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) )
11 eqeq1
 |-  ( h = ( x +h y ) -> ( h = ( v +h u ) <-> ( x +h y ) = ( v +h u ) ) )
12 11 biimpcd
 |-  ( h = ( v +h u ) -> ( h = ( x +h y ) -> ( x +h y ) = ( v +h u ) ) )
13 eqeq1
 |-  ( h = ( z +h w ) -> ( h = ( v +h u ) <-> ( z +h w ) = ( v +h u ) ) )
14 13 biimpcd
 |-  ( h = ( v +h u ) -> ( h = ( z +h w ) -> ( z +h w ) = ( v +h u ) ) )
15 12 14 anim12d
 |-  ( h = ( v +h u ) -> ( ( h = ( x +h y ) /\ h = ( z +h w ) ) -> ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) ) )
16 eqeq1
 |-  ( h = ( f +h g ) -> ( h = ( v +h u ) <-> ( f +h g ) = ( v +h u ) ) )
17 16 biimpcd
 |-  ( h = ( v +h u ) -> ( h = ( f +h g ) -> ( f +h g ) = ( v +h u ) ) )
18 15 17 anim12d
 |-  ( h = ( v +h u ) -> ( ( ( h = ( x +h y ) /\ h = ( z +h w ) ) /\ h = ( f +h g ) ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) )
19 18 expdcom
 |-  ( ( h = ( x +h y ) /\ h = ( z +h w ) ) -> ( h = ( f +h g ) -> ( h = ( v +h u ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) ) )
20 19 imp32
 |-  ( ( ( h = ( x +h y ) /\ h = ( z +h w ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) -> ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) )
21 20 anim2i
 |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( h = ( x +h y ) /\ h = ( z +h w ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) )
22 21 an4s
 |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( h = ( x +h y ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) /\ ( h = ( f +h g ) /\ h = ( v +h u ) ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) )
23 9 10 22 syl2anb
 |-  ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) )
24 1 2 3 4 5 6 7 8 5oalem5
 |-  ( ( ( ( ( x e. A /\ y e. B ) /\ ( z e. C /\ w e. D ) ) /\ ( ( f e. F /\ g e. G ) /\ ( v e. R /\ u e. S ) ) ) /\ ( ( ( x +h y ) = ( v +h u ) /\ ( z +h w ) = ( v +h u ) ) /\ ( f +h g ) = ( v +h u ) ) ) -> ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) )
25 23 24 syl
 |-  ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) )
26 1 3 shscli
 |-  ( A +H C ) e. SH
27 2 4 shscli
 |-  ( B +H D ) e. SH
28 26 27 shincli
 |-  ( ( A +H C ) i^i ( B +H D ) ) e. SH
29 1 7 shscli
 |-  ( A +H R ) e. SH
30 2 8 shscli
 |-  ( B +H S ) e. SH
31 29 30 shincli
 |-  ( ( A +H R ) i^i ( B +H S ) ) e. SH
32 3 7 shscli
 |-  ( C +H R ) e. SH
33 4 8 shscli
 |-  ( D +H S ) e. SH
34 32 33 shincli
 |-  ( ( C +H R ) i^i ( D +H S ) ) e. SH
35 31 34 shscli
 |-  ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) e. SH
36 28 35 shincli
 |-  ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) e. SH
37 1 5 shscli
 |-  ( A +H F ) e. SH
38 2 6 shscli
 |-  ( B +H G ) e. SH
39 37 38 shincli
 |-  ( ( A +H F ) i^i ( B +H G ) ) e. SH
40 5 7 shscli
 |-  ( F +H R ) e. SH
41 6 8 shscli
 |-  ( G +H S ) e. SH
42 40 41 shincli
 |-  ( ( F +H R ) i^i ( G +H S ) ) e. SH
43 31 42 shscli
 |-  ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) e. SH
44 39 43 shincli
 |-  ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) e. SH
45 3 5 shscli
 |-  ( C +H F ) e. SH
46 4 6 shscli
 |-  ( D +H G ) e. SH
47 45 46 shincli
 |-  ( ( C +H F ) i^i ( D +H G ) ) e. SH
48 34 42 shscli
 |-  ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) e. SH
49 47 48 shincli
 |-  ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) e. SH
50 44 49 shscli
 |-  ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) e. SH
51 36 50 shincli
 |-  ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) e. SH
52 1 2 3 51 5oalem1
 |-  ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) )
53 52 expr
 |-  ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ z e. C ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) )
54 53 adantrr
 |-  ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( z e. C /\ w e. D ) ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) )
55 54 adantrr
 |-  ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) )
56 55 adantr
 |-  ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> ( ( x -h z ) e. ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) ) )
57 25 56 mpd
 |-  ( ( ( ( ( x e. A /\ y e. B ) /\ h = ( x +h y ) ) /\ ( ( z e. C /\ w e. D ) /\ h = ( z +h w ) ) ) /\ ( ( ( f e. F /\ g e. G ) /\ h = ( f +h g ) ) /\ ( ( v e. R /\ u e. S ) /\ h = ( v +h u ) ) ) ) -> h e. ( B +H ( A i^i ( C +H ( ( ( ( A +H C ) i^i ( B +H D ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( C +H R ) i^i ( D +H S ) ) ) ) i^i ( ( ( ( A +H F ) i^i ( B +H G ) ) i^i ( ( ( A +H R ) i^i ( B +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) +H ( ( ( C +H F ) i^i ( D +H G ) ) i^i ( ( ( C +H R ) i^i ( D +H S ) ) +H ( ( F +H R ) i^i ( G +H S ) ) ) ) ) ) ) ) ) )