Metamath Proof Explorer


Theorem 5oalem6

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem5.1 A S
5oalem5.2 B S
5oalem5.3 C S
5oalem5.4 D S
5oalem5.5 F S
5oalem5.6 G S
5oalem5.7 R S
5oalem5.8 S S
Assertion 5oalem6 x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S

Proof

Step Hyp Ref Expression
1 5oalem5.1 A S
2 5oalem5.2 B S
3 5oalem5.3 C S
4 5oalem5.4 D S
5 5oalem5.5 F S
6 5oalem5.6 G S
7 5oalem5.7 R S
8 5oalem5.8 S S
9 an4 x A y B h = x + y z C w D h = z + w x A y B z C w D h = x + y h = z + w
10 an4 f F g G h = f + g v R u S h = v + u f F g G v R u S h = f + g h = v + u
11 eqeq1 h = x + y h = v + u x + y = v + u
12 11 biimpcd h = v + u h = x + y x + y = v + u
13 eqeq1 h = z + w h = v + u z + w = v + u
14 13 biimpcd h = v + u h = z + w z + w = v + u
15 12 14 anim12d h = v + u h = x + y h = z + w x + y = v + u z + w = v + u
16 eqeq1 h = f + g h = v + u f + g = v + u
17 16 biimpcd h = v + u h = f + g f + g = v + u
18 15 17 anim12d h = v + u h = x + y h = z + w h = f + g x + y = v + u z + w = v + u f + g = v + u
19 18 expdcom h = x + y h = z + w h = f + g h = v + u x + y = v + u z + w = v + u f + g = v + u
20 19 imp32 h = x + y h = z + w h = f + g h = v + u x + y = v + u z + w = v + u f + g = v + u
21 20 anim2i x A y B z C w D f F g G v R u S h = x + y h = z + w h = f + g h = v + u x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u
22 21 an4s x A y B z C w D h = x + y h = z + w f F g G v R u S h = f + g h = v + u x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u
23 9 10 22 syl2anb x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u
24 1 2 3 4 5 6 7 8 5oalem5 x A y B z C w D f F g G v R u S x + y = v + u z + w = v + u f + g = v + u x - z A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
25 23 24 syl x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u x - z A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
26 1 3 shscli A + C S
27 2 4 shscli B + D S
28 26 27 shincli A + C B + D S
29 1 7 shscli A + R S
30 2 8 shscli B + S S
31 29 30 shincli A + R B + S S
32 3 7 shscli C + R S
33 4 8 shscli D + S S
34 32 33 shincli C + R D + S S
35 31 34 shscli A + R B + S + C + R D + S S
36 28 35 shincli A + C B + D A + R B + S + C + R D + S S
37 1 5 shscli A + F S
38 2 6 shscli B + G S
39 37 38 shincli A + F B + G S
40 5 7 shscli F + R S
41 6 8 shscli G + S S
42 40 41 shincli F + R G + S S
43 31 42 shscli A + R B + S + F + R G + S S
44 39 43 shincli A + F B + G A + R B + S + F + R G + S S
45 3 5 shscli C + F S
46 4 6 shscli D + G S
47 45 46 shincli C + F D + G S
48 34 42 shscli C + R D + S + F + R G + S S
49 47 48 shincli C + F D + G C + R D + S + F + R G + S S
50 44 49 shscli A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S S
51 36 50 shincli A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S S
52 1 2 3 51 5oalem1 x A y B h = x + y z C x - z A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
53 52 expr x A y B h = x + y z C x - z A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
54 53 adantrr x A y B h = x + y z C w D x - z A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
55 54 adantrr x A y B h = x + y z C w D h = z + w x - z A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
56 55 adantr x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u x - z A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
57 25 56 mpd x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S