Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Hypotheses | 5oalem5.1 | |
|
5oalem5.2 | |
||
5oalem5.3 | |
||
5oalem5.4 | |
||
5oalem5.5 | |
||
5oalem5.6 | |
||
5oalem5.7 | |
||
5oalem5.8 | |
||
Assertion | 5oalem6 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 5oalem5.1 | |
|
2 | 5oalem5.2 | |
|
3 | 5oalem5.3 | |
|
4 | 5oalem5.4 | |
|
5 | 5oalem5.5 | |
|
6 | 5oalem5.6 | |
|
7 | 5oalem5.7 | |
|
8 | 5oalem5.8 | |
|
9 | an4 | |
|
10 | an4 | |
|
11 | eqeq1 | |
|
12 | 11 | biimpcd | |
13 | eqeq1 | |
|
14 | 13 | biimpcd | |
15 | 12 14 | anim12d | |
16 | eqeq1 | |
|
17 | 16 | biimpcd | |
18 | 15 17 | anim12d | |
19 | 18 | expdcom | |
20 | 19 | imp32 | |
21 | 20 | anim2i | |
22 | 21 | an4s | |
23 | 9 10 22 | syl2anb | |
24 | 1 2 3 4 5 6 7 8 | 5oalem5 | |
25 | 23 24 | syl | |
26 | 1 3 | shscli | |
27 | 2 4 | shscli | |
28 | 26 27 | shincli | |
29 | 1 7 | shscli | |
30 | 2 8 | shscli | |
31 | 29 30 | shincli | |
32 | 3 7 | shscli | |
33 | 4 8 | shscli | |
34 | 32 33 | shincli | |
35 | 31 34 | shscli | |
36 | 28 35 | shincli | |
37 | 1 5 | shscli | |
38 | 2 6 | shscli | |
39 | 37 38 | shincli | |
40 | 5 7 | shscli | |
41 | 6 8 | shscli | |
42 | 40 41 | shincli | |
43 | 31 42 | shscli | |
44 | 39 43 | shincli | |
45 | 3 5 | shscli | |
46 | 4 6 | shscli | |
47 | 45 46 | shincli | |
48 | 34 42 | shscli | |
49 | 47 48 | shincli | |
50 | 44 49 | shscli | |
51 | 36 50 | shincli | |
52 | 1 2 3 51 | 5oalem1 | |
53 | 52 | expr | |
54 | 53 | adantrr | |
55 | 54 | adantrr | |
56 | 55 | adantr | |
57 | 25 56 | mpd | |