Metamath Proof Explorer


Theorem 5oalem6

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem5.1 AS
5oalem5.2 BS
5oalem5.3 CS
5oalem5.4 DS
5oalem5.5 FS
5oalem5.6 GS
5oalem5.7 RS
5oalem5.8 SS
Assertion 5oalem6 xAyBh=x+yzCwDh=z+wfFgGh=f+gvRuSh=v+uhB+AC+A+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S

Proof

Step Hyp Ref Expression
1 5oalem5.1 AS
2 5oalem5.2 BS
3 5oalem5.3 CS
4 5oalem5.4 DS
5 5oalem5.5 FS
6 5oalem5.6 GS
7 5oalem5.7 RS
8 5oalem5.8 SS
9 an4 xAyBh=x+yzCwDh=z+wxAyBzCwDh=x+yh=z+w
10 an4 fFgGh=f+gvRuSh=v+ufFgGvRuSh=f+gh=v+u
11 eqeq1 h=x+yh=v+ux+y=v+u
12 11 biimpcd h=v+uh=x+yx+y=v+u
13 eqeq1 h=z+wh=v+uz+w=v+u
14 13 biimpcd h=v+uh=z+wz+w=v+u
15 12 14 anim12d h=v+uh=x+yh=z+wx+y=v+uz+w=v+u
16 eqeq1 h=f+gh=v+uf+g=v+u
17 16 biimpcd h=v+uh=f+gf+g=v+u
18 15 17 anim12d h=v+uh=x+yh=z+wh=f+gx+y=v+uz+w=v+uf+g=v+u
19 18 expdcom h=x+yh=z+wh=f+gh=v+ux+y=v+uz+w=v+uf+g=v+u
20 19 imp32 h=x+yh=z+wh=f+gh=v+ux+y=v+uz+w=v+uf+g=v+u
21 20 anim2i xAyBzCwDfFgGvRuSh=x+yh=z+wh=f+gh=v+uxAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+u
22 21 an4s xAyBzCwDh=x+yh=z+wfFgGvRuSh=f+gh=v+uxAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+u
23 9 10 22 syl2anb xAyBh=x+yzCwDh=z+wfFgGh=f+gvRuSh=v+uxAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+u
24 1 2 3 4 5 6 7 8 5oalem5 xAyBzCwDfFgGvRuSx+y=v+uz+w=v+uf+g=v+ux-zA+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S
25 23 24 syl xAyBh=x+yzCwDh=z+wfFgGh=f+gvRuSh=v+ux-zA+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S
26 1 3 shscli A+CS
27 2 4 shscli B+DS
28 26 27 shincli A+CB+DS
29 1 7 shscli A+RS
30 2 8 shscli B+SS
31 29 30 shincli A+RB+SS
32 3 7 shscli C+RS
33 4 8 shscli D+SS
34 32 33 shincli C+RD+SS
35 31 34 shscli A+RB+S+C+RD+SS
36 28 35 shincli A+CB+DA+RB+S+C+RD+SS
37 1 5 shscli A+FS
38 2 6 shscli B+GS
39 37 38 shincli A+FB+GS
40 5 7 shscli F+RS
41 6 8 shscli G+SS
42 40 41 shincli F+RG+SS
43 31 42 shscli A+RB+S+F+RG+SS
44 39 43 shincli A+FB+GA+RB+S+F+RG+SS
45 3 5 shscli C+FS
46 4 6 shscli D+GS
47 45 46 shincli C+FD+GS
48 34 42 shscli C+RD+S+F+RG+SS
49 47 48 shincli C+FD+GC+RD+S+F+RG+SS
50 44 49 shscli A+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+SS
51 36 50 shincli A+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+SS
52 1 2 3 51 5oalem1 xAyBh=x+yzCx-zA+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+ShB+AC+A+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S
53 52 expr xAyBh=x+yzCx-zA+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+ShB+AC+A+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S
54 53 adantrr xAyBh=x+yzCwDx-zA+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+ShB+AC+A+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S
55 54 adantrr xAyBh=x+yzCwDh=z+wx-zA+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+ShB+AC+A+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S
56 55 adantr xAyBh=x+yzCwDh=z+wfFgGh=f+gvRuSh=v+ux-zA+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+ShB+AC+A+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S
57 25 56 mpd xAyBh=x+yzCwDh=z+wfFgGh=f+gvRuSh=v+uhB+AC+A+CB+DA+RB+S+C+RD+SA+FB+GA+RB+S+F+RG+S+C+FD+GC+RD+S+F+RG+S