Metamath Proof Explorer


Theorem 5oalem1

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem1.1 A S
5oalem1.2 B S
5oalem1.3 C S
5oalem1.4 R S
Assertion 5oalem1 x A y B v = x + y z C x - z R v B + A C + R

Proof

Step Hyp Ref Expression
1 5oalem1.1 A S
2 5oalem1.2 B S
3 5oalem1.3 C S
4 5oalem1.4 R S
5 simplll x A y B v = x + y z C x - z R x A
6 1 sheli x A x
7 6 ad2antrr x A y B v = x + y x
8 3 sheli z C z
9 8 adantr z C x - z R z
10 hvaddsub12 x z z x + z - z = z + x - z
11 10 3anidm23 x z x + z - z = z + x - z
12 hvsubid z z - z = 0
13 12 oveq2d z x + z - z = x + 0
14 ax-hvaddid x x + 0 = x
15 13 14 sylan9eqr x z x + z - z = x
16 11 15 eqtr3d x z z + x - z = x
17 7 9 16 syl2an x A y B v = x + y z C x - z R z + x - z = x
18 3 4 shsvai z C x - z R z + x - z C + R
19 18 adantl x A y B v = x + y z C x - z R z + x - z C + R
20 17 19 eqeltrrd x A y B v = x + y z C x - z R x C + R
21 5 20 elind x A y B v = x + y z C x - z R x A C + R
22 simpllr x A y B v = x + y z C x - z R y B
23 3 4 shscli C + R S
24 1 23 shincli A C + R S
25 24 2 shsvai x A C + R y B x + y A C + R + B
26 24 2 shscomi A C + R + B = B + A C + R
27 25 26 eleqtrdi x A C + R y B x + y B + A C + R
28 21 22 27 syl2anc x A y B v = x + y z C x - z R x + y B + A C + R
29 eleq1 v = x + y v B + A C + R x + y B + A C + R
30 29 ad2antlr x A y B v = x + y z C x - z R v B + A C + R x + y B + A C + R
31 28 30 mpbird x A y B v = x + y z C x - z R v B + A C + R