Step |
Hyp |
Ref |
Expression |
1 |
|
5oalem1.1 |
|- A e. SH |
2 |
|
5oalem1.2 |
|- B e. SH |
3 |
|
5oalem1.3 |
|- C e. SH |
4 |
|
5oalem1.4 |
|- R e. SH |
5 |
|
simplll |
|- ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> x e. A ) |
6 |
1
|
sheli |
|- ( x e. A -> x e. ~H ) |
7 |
6
|
ad2antrr |
|- ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) -> x e. ~H ) |
8 |
3
|
sheli |
|- ( z e. C -> z e. ~H ) |
9 |
8
|
adantr |
|- ( ( z e. C /\ ( x -h z ) e. R ) -> z e. ~H ) |
10 |
|
hvaddsub12 |
|- ( ( x e. ~H /\ z e. ~H /\ z e. ~H ) -> ( x +h ( z -h z ) ) = ( z +h ( x -h z ) ) ) |
11 |
10
|
3anidm23 |
|- ( ( x e. ~H /\ z e. ~H ) -> ( x +h ( z -h z ) ) = ( z +h ( x -h z ) ) ) |
12 |
|
hvsubid |
|- ( z e. ~H -> ( z -h z ) = 0h ) |
13 |
12
|
oveq2d |
|- ( z e. ~H -> ( x +h ( z -h z ) ) = ( x +h 0h ) ) |
14 |
|
ax-hvaddid |
|- ( x e. ~H -> ( x +h 0h ) = x ) |
15 |
13 14
|
sylan9eqr |
|- ( ( x e. ~H /\ z e. ~H ) -> ( x +h ( z -h z ) ) = x ) |
16 |
11 15
|
eqtr3d |
|- ( ( x e. ~H /\ z e. ~H ) -> ( z +h ( x -h z ) ) = x ) |
17 |
7 9 16
|
syl2an |
|- ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> ( z +h ( x -h z ) ) = x ) |
18 |
3 4
|
shsvai |
|- ( ( z e. C /\ ( x -h z ) e. R ) -> ( z +h ( x -h z ) ) e. ( C +H R ) ) |
19 |
18
|
adantl |
|- ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> ( z +h ( x -h z ) ) e. ( C +H R ) ) |
20 |
17 19
|
eqeltrrd |
|- ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> x e. ( C +H R ) ) |
21 |
5 20
|
elind |
|- ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> x e. ( A i^i ( C +H R ) ) ) |
22 |
|
simpllr |
|- ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> y e. B ) |
23 |
3 4
|
shscli |
|- ( C +H R ) e. SH |
24 |
1 23
|
shincli |
|- ( A i^i ( C +H R ) ) e. SH |
25 |
24 2
|
shsvai |
|- ( ( x e. ( A i^i ( C +H R ) ) /\ y e. B ) -> ( x +h y ) e. ( ( A i^i ( C +H R ) ) +H B ) ) |
26 |
24 2
|
shscomi |
|- ( ( A i^i ( C +H R ) ) +H B ) = ( B +H ( A i^i ( C +H R ) ) ) |
27 |
25 26
|
eleqtrdi |
|- ( ( x e. ( A i^i ( C +H R ) ) /\ y e. B ) -> ( x +h y ) e. ( B +H ( A i^i ( C +H R ) ) ) ) |
28 |
21 22 27
|
syl2anc |
|- ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> ( x +h y ) e. ( B +H ( A i^i ( C +H R ) ) ) ) |
29 |
|
eleq1 |
|- ( v = ( x +h y ) -> ( v e. ( B +H ( A i^i ( C +H R ) ) ) <-> ( x +h y ) e. ( B +H ( A i^i ( C +H R ) ) ) ) ) |
30 |
29
|
ad2antlr |
|- ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> ( v e. ( B +H ( A i^i ( C +H R ) ) ) <-> ( x +h y ) e. ( B +H ( A i^i ( C +H R ) ) ) ) ) |
31 |
28 30
|
mpbird |
|- ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> v e. ( B +H ( A i^i ( C +H R ) ) ) ) |