Metamath Proof Explorer


Theorem 5oalem1

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 1-Apr-2000) (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem1.1
|- A e. SH
5oalem1.2
|- B e. SH
5oalem1.3
|- C e. SH
5oalem1.4
|- R e. SH
Assertion 5oalem1
|- ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> v e. ( B +H ( A i^i ( C +H R ) ) ) )

Proof

Step Hyp Ref Expression
1 5oalem1.1
 |-  A e. SH
2 5oalem1.2
 |-  B e. SH
3 5oalem1.3
 |-  C e. SH
4 5oalem1.4
 |-  R e. SH
5 simplll
 |-  ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> x e. A )
6 1 sheli
 |-  ( x e. A -> x e. ~H )
7 6 ad2antrr
 |-  ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) -> x e. ~H )
8 3 sheli
 |-  ( z e. C -> z e. ~H )
9 8 adantr
 |-  ( ( z e. C /\ ( x -h z ) e. R ) -> z e. ~H )
10 hvaddsub12
 |-  ( ( x e. ~H /\ z e. ~H /\ z e. ~H ) -> ( x +h ( z -h z ) ) = ( z +h ( x -h z ) ) )
11 10 3anidm23
 |-  ( ( x e. ~H /\ z e. ~H ) -> ( x +h ( z -h z ) ) = ( z +h ( x -h z ) ) )
12 hvsubid
 |-  ( z e. ~H -> ( z -h z ) = 0h )
13 12 oveq2d
 |-  ( z e. ~H -> ( x +h ( z -h z ) ) = ( x +h 0h ) )
14 ax-hvaddid
 |-  ( x e. ~H -> ( x +h 0h ) = x )
15 13 14 sylan9eqr
 |-  ( ( x e. ~H /\ z e. ~H ) -> ( x +h ( z -h z ) ) = x )
16 11 15 eqtr3d
 |-  ( ( x e. ~H /\ z e. ~H ) -> ( z +h ( x -h z ) ) = x )
17 7 9 16 syl2an
 |-  ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> ( z +h ( x -h z ) ) = x )
18 3 4 shsvai
 |-  ( ( z e. C /\ ( x -h z ) e. R ) -> ( z +h ( x -h z ) ) e. ( C +H R ) )
19 18 adantl
 |-  ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> ( z +h ( x -h z ) ) e. ( C +H R ) )
20 17 19 eqeltrrd
 |-  ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> x e. ( C +H R ) )
21 5 20 elind
 |-  ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> x e. ( A i^i ( C +H R ) ) )
22 simpllr
 |-  ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> y e. B )
23 3 4 shscli
 |-  ( C +H R ) e. SH
24 1 23 shincli
 |-  ( A i^i ( C +H R ) ) e. SH
25 24 2 shsvai
 |-  ( ( x e. ( A i^i ( C +H R ) ) /\ y e. B ) -> ( x +h y ) e. ( ( A i^i ( C +H R ) ) +H B ) )
26 24 2 shscomi
 |-  ( ( A i^i ( C +H R ) ) +H B ) = ( B +H ( A i^i ( C +H R ) ) )
27 25 26 eleqtrdi
 |-  ( ( x e. ( A i^i ( C +H R ) ) /\ y e. B ) -> ( x +h y ) e. ( B +H ( A i^i ( C +H R ) ) ) )
28 21 22 27 syl2anc
 |-  ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> ( x +h y ) e. ( B +H ( A i^i ( C +H R ) ) ) )
29 eleq1
 |-  ( v = ( x +h y ) -> ( v e. ( B +H ( A i^i ( C +H R ) ) ) <-> ( x +h y ) e. ( B +H ( A i^i ( C +H R ) ) ) ) )
30 29 ad2antlr
 |-  ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> ( v e. ( B +H ( A i^i ( C +H R ) ) ) <-> ( x +h y ) e. ( B +H ( A i^i ( C +H R ) ) ) ) )
31 28 30 mpbird
 |-  ( ( ( ( x e. A /\ y e. B ) /\ v = ( x +h y ) ) /\ ( z e. C /\ ( x -h z ) e. R ) ) -> v e. ( B +H ( A i^i ( C +H R ) ) ) )