Metamath Proof Explorer


Theorem 5oalem7

Description: Lemma for orthoarguesian law 5OA. (Contributed by NM, 4-May-2000) TODO: replace uses of ee4anv with 4exdistrv as in 3oalem3 . (New usage is discouraged.)

Ref Expression
Hypotheses 5oalem5.1 A S
5oalem5.2 B S
5oalem5.3 C S
5oalem5.4 D S
5oalem5.5 F S
5oalem5.6 G S
5oalem5.7 R S
5oalem5.8 S S
Assertion 5oalem7 A + B C + D F + G R + S B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S

Proof

Step Hyp Ref Expression
1 5oalem5.1 A S
2 5oalem5.2 B S
3 5oalem5.3 C S
4 5oalem5.4 D S
5 5oalem5.5 F S
6 5oalem5.6 G S
7 5oalem5.7 R S
8 5oalem5.8 S S
9 ee4anv x y f g z w x A y B h = x + y z C w D h = z + w v u f F g G h = f + g v R u S h = v + u x y z w x A y B h = x + y z C w D h = z + w f g v u f F g G h = f + g v R u S h = v + u
10 exrot4 z w f g v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u f g z w v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u
11 ee4anv z w v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u z w x A y B h = x + y z C w D h = z + w v u f F g G h = f + g v R u S h = v + u
12 11 2exbii f g z w v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u f g z w x A y B h = x + y z C w D h = z + w v u f F g G h = f + g v R u S h = v + u
13 10 12 bitri z w f g v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u f g z w x A y B h = x + y z C w D h = z + w v u f F g G h = f + g v R u S h = v + u
14 13 2exbii x y z w f g v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u x y f g z w x A y B h = x + y z C w D h = z + w v u f F g G h = f + g v R u S h = v + u
15 elin h A + B C + D F + G R + S h A + B C + D h F + G R + S
16 1 2 shseli h A + B x A y B h = x + y
17 r2ex x A y B h = x + y x y x A y B h = x + y
18 16 17 bitri h A + B x y x A y B h = x + y
19 3 4 shseli h C + D z C w D h = z + w
20 r2ex z C w D h = z + w z w z C w D h = z + w
21 19 20 bitri h C + D z w z C w D h = z + w
22 18 21 anbi12i h A + B h C + D x y x A y B h = x + y z w z C w D h = z + w
23 elin h A + B C + D h A + B h C + D
24 ee4anv x y z w x A y B h = x + y z C w D h = z + w x y x A y B h = x + y z w z C w D h = z + w
25 22 23 24 3bitr4ri x y z w x A y B h = x + y z C w D h = z + w h A + B C + D
26 5 6 shseli h F + G f F g G h = f + g
27 r2ex f F g G h = f + g f g f F g G h = f + g
28 26 27 bitri h F + G f g f F g G h = f + g
29 7 8 shseli h R + S v R u S h = v + u
30 r2ex v R u S h = v + u v u v R u S h = v + u
31 29 30 bitri h R + S v u v R u S h = v + u
32 28 31 anbi12i h F + G h R + S f g f F g G h = f + g v u v R u S h = v + u
33 elin h F + G R + S h F + G h R + S
34 ee4anv f g v u f F g G h = f + g v R u S h = v + u f g f F g G h = f + g v u v R u S h = v + u
35 32 33 34 3bitr4ri f g v u f F g G h = f + g v R u S h = v + u h F + G R + S
36 25 35 anbi12i x y z w x A y B h = x + y z C w D h = z + w f g v u f F g G h = f + g v R u S h = v + u h A + B C + D h F + G R + S
37 15 36 bitr4i h A + B C + D F + G R + S x y z w x A y B h = x + y z C w D h = z + w f g v u f F g G h = f + g v R u S h = v + u
38 9 14 37 3bitr4ri h A + B C + D F + G R + S x y z w f g v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u
39 1 2 3 4 5 6 7 8 5oalem6 x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
40 39 exlimivv v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
41 40 exlimivv f g v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
42 41 exlimivv z w f g v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
43 42 exlimivv x y z w f g v u x A y B h = x + y z C w D h = z + w f F g G h = f + g v R u S h = v + u h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
44 38 43 sylbi h A + B C + D F + G R + S h B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S
45 44 ssriv A + B C + D F + G R + S B + A C + A + C B + D A + R B + S + C + R D + S A + F B + G A + R B + S + F + R G + S + C + F D + G C + R D + S + F + R G + S