| Step | Hyp | Ref | Expression | 
						
							| 1 |  | congsym |  |-  ( ( ( A e. ZZ /\ B e. ZZ ) /\ ( C e. ZZ /\ A || ( B - C ) ) ) -> A || ( C - B ) ) | 
						
							| 2 | 1 | exp32 |  |-  ( ( A e. ZZ /\ B e. ZZ ) -> ( C e. ZZ -> ( A || ( B - C ) -> A || ( C - B ) ) ) ) | 
						
							| 3 | 2 | 3impia |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( B - C ) -> A || ( C - B ) ) ) | 
						
							| 4 |  | zcn |  |-  ( B e. ZZ -> B e. CC ) | 
						
							| 5 | 4 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> B e. CC ) | 
						
							| 6 | 5 | negnegd |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> -u -u B = B ) | 
						
							| 7 | 6 | oveq1d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( -u -u B - -u C ) = ( B - -u C ) ) | 
						
							| 8 | 4 | negcld |  |-  ( B e. ZZ -> -u B e. CC ) | 
						
							| 9 | 8 | 3ad2ant2 |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> -u B e. CC ) | 
						
							| 10 |  | zcn |  |-  ( C e. ZZ -> C e. CC ) | 
						
							| 11 | 10 | 3ad2ant3 |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> C e. CC ) | 
						
							| 12 | 9 11 | neg2subd |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( -u -u B - -u C ) = ( C - -u B ) ) | 
						
							| 13 | 7 12 | eqtr3d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( B - -u C ) = ( C - -u B ) ) | 
						
							| 14 | 13 | breq2d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( B - -u C ) <-> A || ( C - -u B ) ) ) | 
						
							| 15 | 14 | biimpd |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( A || ( B - -u C ) -> A || ( C - -u B ) ) ) | 
						
							| 16 | 3 15 | orim12d |  |-  ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) -> ( ( A || ( B - C ) \/ A || ( B - -u C ) ) -> ( A || ( C - B ) \/ A || ( C - -u B ) ) ) ) | 
						
							| 17 | 16 | imp |  |-  ( ( ( A e. ZZ /\ B e. ZZ /\ C e. ZZ ) /\ ( A || ( B - C ) \/ A || ( B - -u C ) ) ) -> ( A || ( C - B ) \/ A || ( C - -u B ) ) ) |