| Step |
Hyp |
Ref |
Expression |
| 1 |
|
congsym |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) ∧ ( 𝐶 ∈ ℤ ∧ 𝐴 ∥ ( 𝐵 − 𝐶 ) ) ) → 𝐴 ∥ ( 𝐶 − 𝐵 ) ) |
| 2 |
1
|
exp32 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐶 ∈ ℤ → ( 𝐴 ∥ ( 𝐵 − 𝐶 ) → 𝐴 ∥ ( 𝐶 − 𝐵 ) ) ) ) |
| 3 |
2
|
3impia |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐵 − 𝐶 ) → 𝐴 ∥ ( 𝐶 − 𝐵 ) ) ) |
| 4 |
|
zcn |
⊢ ( 𝐵 ∈ ℤ → 𝐵 ∈ ℂ ) |
| 5 |
4
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐵 ∈ ℂ ) |
| 6 |
5
|
negnegd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → - - 𝐵 = 𝐵 ) |
| 7 |
6
|
oveq1d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( - - 𝐵 − - 𝐶 ) = ( 𝐵 − - 𝐶 ) ) |
| 8 |
4
|
negcld |
⊢ ( 𝐵 ∈ ℤ → - 𝐵 ∈ ℂ ) |
| 9 |
8
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → - 𝐵 ∈ ℂ ) |
| 10 |
|
zcn |
⊢ ( 𝐶 ∈ ℤ → 𝐶 ∈ ℂ ) |
| 11 |
10
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → 𝐶 ∈ ℂ ) |
| 12 |
9 11
|
neg2subd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( - - 𝐵 − - 𝐶 ) = ( 𝐶 − - 𝐵 ) ) |
| 13 |
7 12
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐵 − - 𝐶 ) = ( 𝐶 − - 𝐵 ) ) |
| 14 |
13
|
breq2d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐵 − - 𝐶 ) ↔ 𝐴 ∥ ( 𝐶 − - 𝐵 ) ) ) |
| 15 |
14
|
biimpd |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( 𝐴 ∥ ( 𝐵 − - 𝐶 ) → 𝐴 ∥ ( 𝐶 − - 𝐵 ) ) ) |
| 16 |
3 15
|
orim12d |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 ∥ ( 𝐵 − 𝐶 ) ∨ 𝐴 ∥ ( 𝐵 − - 𝐶 ) ) → ( 𝐴 ∥ ( 𝐶 − 𝐵 ) ∨ 𝐴 ∥ ( 𝐶 − - 𝐵 ) ) ) ) |
| 17 |
16
|
imp |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ 𝐶 ∈ ℤ ) ∧ ( 𝐴 ∥ ( 𝐵 − 𝐶 ) ∨ 𝐴 ∥ ( 𝐵 − - 𝐶 ) ) ) → ( 𝐴 ∥ ( 𝐶 − 𝐵 ) ∨ 𝐴 ∥ ( 𝐶 − - 𝐵 ) ) ) |