| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elprnq |  |-  ( ( A e. P. /\ g e. A ) -> g e. Q. ) | 
						
							| 2 |  | ltrnq |  |-  ( x  ( *Q ` ( g +Q h ) )  | 
						
							| 3 |  | ltmnq |  |-  ( x e. Q. -> ( ( *Q ` ( g +Q h ) )  ( x .Q ( *Q ` ( g +Q h ) ) )  | 
						
							| 4 |  | ovex |  |-  ( x .Q ( *Q ` ( g +Q h ) ) ) e. _V | 
						
							| 5 |  | ovex |  |-  ( x .Q ( *Q ` x ) ) e. _V | 
						
							| 6 |  | ltmnq |  |-  ( w e. Q. -> ( y  ( w .Q y )  | 
						
							| 7 |  | vex |  |-  g e. _V | 
						
							| 8 |  | mulcomnq |  |-  ( y .Q z ) = ( z .Q y ) | 
						
							| 9 | 4 5 6 7 8 | caovord2 |  |-  ( g e. Q. -> ( ( x .Q ( *Q ` ( g +Q h ) ) )  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )  | 
						
							| 10 | 3 9 | sylan9bbr |  |-  ( ( g e. Q. /\ x e. Q. ) -> ( ( *Q ` ( g +Q h ) )  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )  | 
						
							| 11 | 2 10 | bitrid |  |-  ( ( g e. Q. /\ x e. Q. ) -> ( x  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )  | 
						
							| 12 |  | recidnq |  |-  ( x e. Q. -> ( x .Q ( *Q ` x ) ) = 1Q ) | 
						
							| 13 | 12 | oveq1d |  |-  ( x e. Q. -> ( ( x .Q ( *Q ` x ) ) .Q g ) = ( 1Q .Q g ) ) | 
						
							| 14 |  | mulcomnq |  |-  ( 1Q .Q g ) = ( g .Q 1Q ) | 
						
							| 15 |  | mulidnq |  |-  ( g e. Q. -> ( g .Q 1Q ) = g ) | 
						
							| 16 | 14 15 | eqtrid |  |-  ( g e. Q. -> ( 1Q .Q g ) = g ) | 
						
							| 17 | 13 16 | sylan9eqr |  |-  ( ( g e. Q. /\ x e. Q. ) -> ( ( x .Q ( *Q ` x ) ) .Q g ) = g ) | 
						
							| 18 | 17 | breq2d |  |-  ( ( g e. Q. /\ x e. Q. ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )  | 
						
							| 19 | 11 18 | bitrd |  |-  ( ( g e. Q. /\ x e. Q. ) -> ( x  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )  | 
						
							| 20 | 1 19 | sylan |  |-  ( ( ( A e. P. /\ g e. A ) /\ x e. Q. ) -> ( x  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )  | 
						
							| 21 |  | prcdnq |  |-  ( ( A e. P. /\ g e. A ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) | 
						
							| 22 | 21 | adantr |  |-  ( ( ( A e. P. /\ g e. A ) /\ x e. Q. ) -> ( ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g )  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) | 
						
							| 23 | 20 22 | sylbid |  |-  ( ( ( A e. P. /\ g e. A ) /\ x e. Q. ) -> ( x  ( ( x .Q ( *Q ` ( g +Q h ) ) ) .Q g ) e. A ) ) |