| Step | Hyp | Ref | Expression | 
						
							| 1 |  | peano2cnm |  |-  ( C e. CC -> ( C - 1 ) e. CC ) | 
						
							| 2 |  | id |  |-  ( C e. CC -> C e. CC ) | 
						
							| 3 |  | 4cn |  |-  4 e. CC | 
						
							| 4 | 3 | a1i |  |-  ( C e. CC -> 4 e. CC ) | 
						
							| 5 | 2 4 | subcld |  |-  ( C e. CC -> ( C - 4 ) e. CC ) | 
						
							| 6 |  | 1cnd |  |-  ( C e. CC -> 1 e. CC ) | 
						
							| 7 |  | 1re |  |-  1 e. RR | 
						
							| 8 |  | 1lt4 |  |-  1 < 4 | 
						
							| 9 | 7 8 | ltneii |  |-  1 =/= 4 | 
						
							| 10 | 9 | a1i |  |-  ( C e. CC -> 1 =/= 4 ) | 
						
							| 11 | 2 6 4 10 | subneintrd |  |-  ( C e. CC -> ( C - 1 ) =/= ( C - 4 ) ) | 
						
							| 12 |  | oveq1 |  |-  ( b = 1 -> ( b ^ 2 ) = ( 1 ^ 2 ) ) | 
						
							| 13 | 12 | oveq2d |  |-  ( b = 1 -> ( ( C - 1 ) + ( b ^ 2 ) ) = ( ( C - 1 ) + ( 1 ^ 2 ) ) ) | 
						
							| 14 | 13 | eqeq1d |  |-  ( b = 1 -> ( ( ( C - 1 ) + ( b ^ 2 ) ) = C <-> ( ( C - 1 ) + ( 1 ^ 2 ) ) = C ) ) | 
						
							| 15 | 14 | adantl |  |-  ( ( C e. CC /\ b = 1 ) -> ( ( ( C - 1 ) + ( b ^ 2 ) ) = C <-> ( ( C - 1 ) + ( 1 ^ 2 ) ) = C ) ) | 
						
							| 16 |  | sq1 |  |-  ( 1 ^ 2 ) = 1 | 
						
							| 17 | 16 | oveq2i |  |-  ( ( C - 1 ) + ( 1 ^ 2 ) ) = ( ( C - 1 ) + 1 ) | 
						
							| 18 |  | npcan1 |  |-  ( C e. CC -> ( ( C - 1 ) + 1 ) = C ) | 
						
							| 19 | 17 18 | eqtrid |  |-  ( C e. CC -> ( ( C - 1 ) + ( 1 ^ 2 ) ) = C ) | 
						
							| 20 | 6 15 19 | rspcedvd |  |-  ( C e. CC -> E. b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) | 
						
							| 21 |  | 2cnd |  |-  ( C e. CC -> 2 e. CC ) | 
						
							| 22 |  | oveq1 |  |-  ( b = 2 -> ( b ^ 2 ) = ( 2 ^ 2 ) ) | 
						
							| 23 | 22 | oveq2d |  |-  ( b = 2 -> ( ( C - 4 ) + ( b ^ 2 ) ) = ( ( C - 4 ) + ( 2 ^ 2 ) ) ) | 
						
							| 24 | 23 | eqeq1d |  |-  ( b = 2 -> ( ( ( C - 4 ) + ( b ^ 2 ) ) = C <-> ( ( C - 4 ) + ( 2 ^ 2 ) ) = C ) ) | 
						
							| 25 | 24 | adantl |  |-  ( ( C e. CC /\ b = 2 ) -> ( ( ( C - 4 ) + ( b ^ 2 ) ) = C <-> ( ( C - 4 ) + ( 2 ^ 2 ) ) = C ) ) | 
						
							| 26 |  | 2cn |  |-  2 e. CC | 
						
							| 27 | 26 | sqcli |  |-  ( 2 ^ 2 ) e. CC | 
						
							| 28 | 27 | a1i |  |-  ( C e. CC -> ( 2 ^ 2 ) e. CC ) | 
						
							| 29 | 2 4 28 | subadd23d |  |-  ( C e. CC -> ( ( C - 4 ) + ( 2 ^ 2 ) ) = ( C + ( ( 2 ^ 2 ) - 4 ) ) ) | 
						
							| 30 |  | sq2 |  |-  ( 2 ^ 2 ) = 4 | 
						
							| 31 | 30 | a1i |  |-  ( C e. CC -> ( 2 ^ 2 ) = 4 ) | 
						
							| 32 | 28 31 | subeq0bd |  |-  ( C e. CC -> ( ( 2 ^ 2 ) - 4 ) = 0 ) | 
						
							| 33 | 27 3 | subcli |  |-  ( ( 2 ^ 2 ) - 4 ) e. CC | 
						
							| 34 |  | addid0 |  |-  ( ( C e. CC /\ ( ( 2 ^ 2 ) - 4 ) e. CC ) -> ( ( C + ( ( 2 ^ 2 ) - 4 ) ) = C <-> ( ( 2 ^ 2 ) - 4 ) = 0 ) ) | 
						
							| 35 | 33 34 | mpan2 |  |-  ( C e. CC -> ( ( C + ( ( 2 ^ 2 ) - 4 ) ) = C <-> ( ( 2 ^ 2 ) - 4 ) = 0 ) ) | 
						
							| 36 | 32 35 | mpbird |  |-  ( C e. CC -> ( C + ( ( 2 ^ 2 ) - 4 ) ) = C ) | 
						
							| 37 | 29 36 | eqtrd |  |-  ( C e. CC -> ( ( C - 4 ) + ( 2 ^ 2 ) ) = C ) | 
						
							| 38 | 21 25 37 | rspcedvd |  |-  ( C e. CC -> E. b e. CC ( ( C - 4 ) + ( b ^ 2 ) ) = C ) | 
						
							| 39 |  | oveq1 |  |-  ( a = ( C - 1 ) -> ( a + ( b ^ 2 ) ) = ( ( C - 1 ) + ( b ^ 2 ) ) ) | 
						
							| 40 | 39 | eqeq1d |  |-  ( a = ( C - 1 ) -> ( ( a + ( b ^ 2 ) ) = C <-> ( ( C - 1 ) + ( b ^ 2 ) ) = C ) ) | 
						
							| 41 | 40 | rexbidv |  |-  ( a = ( C - 1 ) -> ( E. b e. CC ( a + ( b ^ 2 ) ) = C <-> E. b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C ) ) | 
						
							| 42 |  | oveq1 |  |-  ( a = ( C - 4 ) -> ( a + ( b ^ 2 ) ) = ( ( C - 4 ) + ( b ^ 2 ) ) ) | 
						
							| 43 | 42 | eqeq1d |  |-  ( a = ( C - 4 ) -> ( ( a + ( b ^ 2 ) ) = C <-> ( ( C - 4 ) + ( b ^ 2 ) ) = C ) ) | 
						
							| 44 | 43 | rexbidv |  |-  ( a = ( C - 4 ) -> ( E. b e. CC ( a + ( b ^ 2 ) ) = C <-> E. b e. CC ( ( C - 4 ) + ( b ^ 2 ) ) = C ) ) | 
						
							| 45 | 41 44 | 2nreu |  |-  ( ( ( C - 1 ) e. CC /\ ( C - 4 ) e. CC /\ ( C - 1 ) =/= ( C - 4 ) ) -> ( ( E. b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C /\ E. b e. CC ( ( C - 4 ) + ( b ^ 2 ) ) = C ) -> -. E! a e. CC E. b e. CC ( a + ( b ^ 2 ) ) = C ) ) | 
						
							| 46 | 45 | imp |  |-  ( ( ( ( C - 1 ) e. CC /\ ( C - 4 ) e. CC /\ ( C - 1 ) =/= ( C - 4 ) ) /\ ( E. b e. CC ( ( C - 1 ) + ( b ^ 2 ) ) = C /\ E. b e. CC ( ( C - 4 ) + ( b ^ 2 ) ) = C ) ) -> -. E! a e. CC E. b e. CC ( a + ( b ^ 2 ) ) = C ) | 
						
							| 47 | 1 5 11 20 38 46 | syl32anc |  |-  ( C e. CC -> -. E! a e. CC E. b e. CC ( a + ( b ^ 2 ) ) = C ) |